在平面直角坐標(biāo)系xOy中,設(shè)曲線C1所圍成的封閉圖形的面積為,曲線C1上的點(diǎn)到原點(diǎn)O的最短距離為.以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓記為C2
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.Ml上的點(diǎn)(與O不重合).
①若MO=2OA,當(dāng)點(diǎn)A在橢圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡方程;
②若Ml與橢圓C2的交點(diǎn),求△AMB的面積的最小值.

(1);(2)①;②

解析試題分析:(1)對于曲線C1的處理,關(guān)鍵問題是兩個(gè)絕對值的處理,根據(jù)x,y的特點(diǎn),不難發(fā)現(xiàn)與坐標(biāo)系中的四個(gè)象限有關(guān),進(jìn)而即可得到,即可得出橢圓方程; (2)①由l是線段AB的垂直平分線,可轉(zhuǎn)化為:,又由MO=2OA,可轉(zhuǎn)化得到:,這樣的好處是兩條件均轉(zhuǎn)化為向量了,設(shè)出點(diǎn)M和點(diǎn)A的坐標(biāo)即可得到關(guān)系:解出再利用點(diǎn)M在所求橢圓上即可求出:;②中要求△AMB的面積的最小值,根據(jù)此地三角形的特點(diǎn),不難想到直線AB的設(shè)出,根據(jù)斜率是否存在,可先考慮兩種特殊情況:一種不存在;另一種為0,再考慮一般情形,運(yùn)用方程組思想即可得:,進(jìn)而表示出面積:,最后結(jié)合不等式知識(shí)即可求出最小值.
試題解析:(1)由題意得 又,解得,
因此所求橢圓的標(biāo)準(zhǔn)方程為.                                4分
(2)①設(shè),,則由題設(shè)知:,
 解得                               8分
因?yàn)辄c(diǎn)在橢圓C2上,所以,
,亦即
所以點(diǎn)M的軌跡方程為.                                   10分
②假設(shè)AB所在的直線斜率存在且不為零,設(shè)AB所在直線方程為ykx(k≠0).
解方程組 得,,
所以.
 解得,,所以.     12分
由于
,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即k=±1時(shí)等號(hào)成立,
此時(shí)△AMB面積的最小值是SAMB.                                 15分
當(dāng)k=0,SAMB;
當(dāng)k不存在時(shí),SAMB
綜上所述,△AMB面積的最小值為.                                    16分
考點(diǎn):1.橢圓方程;2.直線與橢圓的位置關(guān)系;3.基本不等式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線斜率為0時(shí),

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓ab0)的離心率為,且過點(diǎn)().
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓(1<R<2)相切于點(diǎn)A,且l與橢圓E只有一個(gè)公共點(diǎn)B.
①求證:;
②當(dāng)R為何值時(shí),取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面上的動(dòng)點(diǎn)P(x,y)及兩個(gè)定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動(dòng)點(diǎn)P的軌跡C方程;
(2).設(shè)直線L:y=kx+m與曲線C交于不同兩點(diǎn),M,N,當(dāng)OM⊥ON時(shí),求O點(diǎn)到直線L的距離(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的一點(diǎn),其縱坐標(biāo)為,.
(1)求拋物線的方程;
(2)設(shè)為拋物線上不同于的兩點(diǎn),且,過兩點(diǎn)分別作拋物線的切線,記兩切線的交點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)為橢圓右焦點(diǎn),圓與橢圓的一個(gè)公共點(diǎn)為,且直線與圓相切于點(diǎn).

(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足,其中M、N是橢圓上的點(diǎn),為原點(diǎn),直線OM與ON的斜率之積為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點(diǎn)分別為A、B,已知點(diǎn)B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l于點(diǎn)C,N為線段BC的中點(diǎn),求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.

(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案