精英家教網 > 高中數學 > 題目詳情
如果有窮數列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數列”.例如:數列1,2,3,4,3,2,1就是“對稱數列”.已知數列bn是項數為不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中前連續(xù)的m項,則數列bn的前2008項和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個數為( )
A.1
B.2
C.3
D.4
【答案】分析:由題意由于新定義了對稱數列,且已知數列bn是項數為不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中前連續(xù)的m項,故數列bn的前2008項利用等比數列的前n項和定義直接可求①②的正確與否;對于③④,先從等比數列的求和公式求出任意2m項的和在利用減法的到需要的前2008項的和,即可判斷.
解答:解:因為數列bn是項數為不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中前連續(xù)的m項,
故數列bn的前2008項可以是:①1,2,22,23…,21003,21003,…,22,1.
所以前2008項和S2008=2×=2(21004-1),所以①②錯;
對于 ③1,2,22…2m-1,2m-1,2m-2,…,2,1,
1,2,…2m-2,2m-1,2m-1,2m-2,…,2,1…m=2n.m=8,利用等比數列的求和公式可以得:s2008=3•2m-1-22m-2009-1,所以③正確;
對于④1,2,22,…2m-2,2m-1,2m-2,…,2,1,1,2,…2m-2,2m-1,2m-2,…,2,1…m-1=2n+1,利用等比數列的求和公式可得:
S2008=2m+1-22m-2008-1,故④正確.
故選:B
點評:此題考查了學生對于新題意,新定義的理解,還考查了等比數列的求和公式及學生的計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,a3,…,am(m為正整數)滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數列“例如,數列1,2,5,2,1與數列8,4,2,2,4,8都是“對稱數列”.設{bn}是項數為2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,23,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2010項和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正確命題的個數為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數列”.例如:數列1,2,3,4,3,2,1就是“對稱數列”.已知數列bn是項數為不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中前連續(xù)的m項,則數列bn的前2008項和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個數為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數列”.例如:數列1,2,3,3,2,1 和數列1,2,3,4,3,2,1都為“對稱數列”.已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2009項和S2009所有可能為:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正確的有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數列”.例如:數列1,2,3,3,2,1 和數列1,2,3,4,3,2,1都為“對稱數列”.已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2009項和S2009所有可能的取值的序號為( 。
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省高三第五次月考理科數學 題型:填空題

如果有窮數列a1,a2,…an(a∈N*)滿足條件:,我們稱

其為“對稱數列”,例如:數列1,2,3,3,2,1和數列1,2,3,4,3,2,1都為“對稱數列”。已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,……,2m-1依次為該數列中連續(xù)的前m項,則數列的前2009項和S2009所有可能的取值的序號為            。

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步練習冊答案