【題目】如圖1,在邊長為3的正三角形中, , 分別為 , 上的點,且滿足.將沿折起到的位置,使平面平面,連結, .(如圖2)

(Ⅰ)若中點,求證: 平面;

(Ⅱ)求證:

(Ⅲ)求與平面所成角的正切.

【答案】(1)見解析(2)見解析(3)

【解析】試題分析:(Ⅰ)取中點,連結 .由三角中位線可證四邊形為平行四邊形,則,再由線線平行到線面平行;(Ⅱ)取中點,連結,由所給數(shù)據(jù)可證平面平面,再由面面垂直,線面垂直的性質(zhì)可得;(Ⅲ)作,連接,則,可得與平面所成角,可求其正切值.

試題解析:證明:(Ⅰ)取中點,連結, .

中, , 分別為, 的中點,

所以,且.

因為,

所以,且,

所以, .

所以四邊形為平行四邊形.

所以.

又因為平面,且平面,所以平面.

(Ⅱ)取中點,連結.

因為 ,

,即是正三角形.

又因為,所以.

所以在圖2有.

因為平面平面,平面平面所以平面平面所以

(Ⅲ)作,連接,則

因為 , ,因此平面,

因此平面,因此在平面內(nèi)的射影,

因此與平面所成角,

, ,

中, ,于是

因此

因此與平面所成角的正切為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,A1C1⊥B1D1 , E,F(xiàn)分別是AB,BC的中點.

(1)求證:EF∥平面A1BC1
(2)求證:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年高一新生入學后,為了了解新生學業(yè)水平,某區(qū)對新生進行了水平測試,隨機抽取了50名新生的成績,其相關數(shù)據(jù)統(tǒng)計如下:

分數(shù)段

頻數(shù)

選擇題得分24分以上(含24分)

5

2

10

4

15

12

10

6

5

4

5

5

(Ⅰ)若從分數(shù)在 的被調(diào)查的新生中各隨機選取2人進行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;

(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個袋子,其中甲袋中裝有編號分別為1、2、3、4的4個完全相同的球,乙袋中裝有編號分別為2、4、6的3個完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個球,從乙袋中取一個球,求所取出的3個球中含有編號為2的球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形ABC的頂點坐標為A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB邊上的高線所在的直線方程;
(2)求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市規(guī)定,高中學生在校期間須參加不少于80小時的社區(qū)服務才合格.某校隨機抽取20位學生參加社區(qū)服務的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.

(1)求抽取的20人中,參加社區(qū)服務時間不少于90小時的學生人數(shù);
(2)從參加社區(qū)服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區(qū)服務時間在同一時間段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動和運動手環(huán)的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學在全校范圍內(nèi)內(nèi)積極倡導和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實落地工作后,學校想了解全校師生每天一萬步的情況,學校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學校委托數(shù)學組調(diào)查,數(shù)學組采用分層抽樣的辦法去估計全校師生的情況,結合實際及便于分層抽樣,認定全校教師人數(shù)為人,高一學生人數(shù)為人,高二學生人數(shù)人,高三學生人數(shù),從中抽取人作為調(diào)查對象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學校界定為不健康生活方式者.

(1)求這次作為抽樣調(diào)查對象的教師人數(shù);

(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);

(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬步”活動的慰問對象,計劃學校界定不健康生活方式者鞭策性精神鼓勵元,超健康生活方式者表彰獎勵元,一般生活方式者鼓勵性獎勵元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為元的概率.

查看答案和解析>>

同步練習冊答案