(1)已知x,y,z∈R,且x+y+z=8,x2+y2+z2=24,求證:
(2)已知a1,b1,x1,x2∈R+,ab=1,x1+x2=2,求證:(ax1+bx2)(bx1+ax2)≥4
(3)已知
【答案】分析:(1)用x表示y+z和y2+z2,即y+z=8-x,y2+z2=24-x2.再利用柯西不等式(y2+z2)(1+1)≥(y+z)2
得到關于x的一元二次不等式(24-x2)(1+1)≥(8-x)2,化簡求得x的范圍即可,同理可求得y和z的范圍
(2)直接利用柯西不等式證明得到;
(3)直接利用柯西不等式證明得到.
解答:證明:(1)∵x,y,z∈R,x+y+z=8,x2+y2+z2=24,∴y+z=8-x,y2+z2=24-x2
又由柯西不等式可知(y2+z2)(1+1)≥(y+z)2,即(24-x2)(1+1)≥(8-x)2,
化簡后可得,同理可證,
(2)∵a1,b1,x1,x2∈R+,ab=1,x1+x2=2,
=(x1+x22=4.
∴(ax1+bx2)(bx1+ax2)≥4.
(3)∵a.b.c.d∈R+a+b+c+d=1,

點評:此題考查柯西不等式應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y,z為正實數(shù),且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值
36
36
此時 x=
6
6
,y=
3
3
,z=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知x,y,z∈R,且x+y+z=8,x2+y2+z2=24,求證:
4
3
≤x≤4,
4
3
≤y≤4,
4
3
≤z≤4

(2)已知a1,b1,x1,x2∈R+,ab=1,x1+x2=2,求證:(ax1+bx2)(bx1+ax2)≥4
(3)已知a.b.c.d∈R+且a+b+c+d=1,求證:
1
a
+
1
b
+
1
c
+
1
d
≥16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5不等式選講
(1)已知x,y,z∈R,且x2+y2+z2=1,求2x+3y+4z的最大值;
(2)解關于x的不等式:|2x+1|+|x+2|>5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5不等式選講
(1)已知x,y,z∈R,且x2+y2+z2=1,求2x+3y+4z的最小值;
(2)解關于x的不等式:|2x+1|+|x+2|>5.

查看答案和解析>>

同步練習冊答案