空間四邊形ABCD中,AD=BC=2,E,F分別是AB,CD的中點,EF,則異面直線AD,BC所成的角為( )

A30° B60° C90° D120°

 

B

【解析】

試題分析:設(shè)GAC的中點,由已知中AD=BC=2E、F分別是AB、CD的中點,若EF

,根據(jù)三角形中位線定理,我們易求出∠EGF為異面直線AD、BC所成的角(或其補角),解三角形EGF即可得到答案.

考點:異面直線所成的角.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆湖北孝感高級中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含個小正方形.則等于( )

A761 B762 C841 D842

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江省臺州市高二第一學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:填空題

兩條平行直線間的距離為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題

已知曲線C上的動點P)滿足到定點A(-1,0)的距離與到定點B1,0距離之比為

(1)求曲線C的方程。

(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:填空題

已知某幾何體的三視圖(單位: cm)如右圖所示,則該幾何體的體積是 。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:選擇題

已知橢圓上一點到右焦點的距離是1,則點到左焦點的距離是( )

A. B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:填空題

已知拋物線上一點到焦點的距離等于5,則到坐標(biāo)原點的距離為 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數(shù)有關(guān),當(dāng)該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.

1)為了使該球場每平方米的綜合費用最。ňC合費用是建筑費用與購地費用之和),公司應(yīng)建幾座網(wǎng)球場?

2)若球場每平方米的綜合費用不超過820元,最多建幾座網(wǎng)球場?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南許昌市五高二上期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,梯形ABCD的底邊ABy軸上,原點OAB的中點,MCD的中點.

1)求點M的軌跡方程;

2)過MAB的垂線,垂足為N,若存在正常數(shù),使,且P點到A、B 的距離和為定值,求點P的軌跡E的方程;

3)過的直線與軌跡E交于P、Q兩點,求面積的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案