如圖,已知雙曲線(xiàn)Ca0b0),B是右頂點(diǎn),F是右焦點(diǎn),點(diǎn)Ax軸的正半軸上,且滿(mǎn)足||,||,||成等比數(shù)列,過(guò)F作雙曲線(xiàn)C在第一、三象限的漸近線(xiàn)的垂線(xiàn)l,垂足為P

 。á瘢┣笞C:··

 。á颍┤l與雙曲線(xiàn)C的左、有兩支分別交于點(diǎn)D,E,求雙曲線(xiàn)C的離心率e的取值范圍

 

答案:
解析:

(Ⅰ)證明:  l,由  得

  

  ∵  ,,成等比數(shù)列,

  ∴  ,,,,,,,

  ∴  ,

  ∴ 

(Ⅱ)解: ,  ∴  ,

  即

  ∵ 

  ∴  ,即,,

  ∴  ,

  ∴ 

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知雙曲線(xiàn)C:
y2
a2
-
x2
b2
=1
(a>0,b>0)的離心率e=
2
,F(xiàn)1、F2分別為雙曲線(xiàn)C的上、下焦點(diǎn),M為上準(zhǔn)線(xiàn)與漸近線(xiàn)在第一象限的交點(diǎn),且
MF1
MF2
=-1.
(1)求雙曲線(xiàn)C的方程;
(2)直線(xiàn)l交雙曲線(xiàn)C的漸近線(xiàn)l1、l2于P1、P2,交雙曲線(xiàn)于P、Q,且
P1P
=2
PP2
,求|
PQ
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右準(zhǔn)線(xiàn)l1與一條漸近線(xiàn)l2交于點(diǎn)M,F(xiàn)是雙曲線(xiàn)C的右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(I)求證:
OM
MF
;
(II)若|
MF
|=1且雙曲線(xiàn)C的離心率e=
6
2
,求雙曲線(xiàn)C的方程;
(III)在(II)的條件下,直線(xiàn)l3過(guò)點(diǎn)A(0,1)與雙曲線(xiàn)C右支交于不同的兩點(diǎn)P、Q且P在A(yíng)、Q之間,滿(mǎn)足
AP
AQ
,試判斷λ的范圍,并用代數(shù)方法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知雙曲線(xiàn)C:數(shù)學(xué)公式(a>0,b>0)的離心率e=數(shù)學(xué)公式,F(xiàn)1、F2分別為雙曲線(xiàn)C的上、下焦點(diǎn),M為上準(zhǔn)線(xiàn)與漸近線(xiàn)在第一象限的交點(diǎn),且數(shù)學(xué)公式=-1.
(1)求雙曲線(xiàn)C的方程;
(2)直線(xiàn)l交雙曲線(xiàn)C的漸近線(xiàn)l1、l2于P1、P2,交雙曲線(xiàn)于P、Q,且數(shù)學(xué)公式,求|數(shù)學(xué)公式|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省延邊五中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,已知雙曲線(xiàn)C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線(xiàn)C的上、下焦點(diǎn),M為上準(zhǔn)線(xiàn)與漸近線(xiàn)在第一象限的交點(diǎn),且=-1.
(1)求雙曲線(xiàn)C的方程;
(2)直線(xiàn)l交雙曲線(xiàn)C的漸近線(xiàn)l1、l2于P1、P2,交雙曲線(xiàn)于P、Q,且,求||的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省延邊五中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,已知雙曲線(xiàn)C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線(xiàn)C的上、下焦點(diǎn),M為上準(zhǔn)線(xiàn)與漸近線(xiàn)在第一象限的交點(diǎn),且=-1.
(1)求雙曲線(xiàn)C的方程;
(2)直線(xiàn)l交雙曲線(xiàn)C的漸近線(xiàn)l1、l2于P1、P2,交雙曲線(xiàn)于P、Q,且,求||的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案