【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中AB兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設(shè)備,從圓心O點出發(fā),在地下鋪設(shè)4條到AB,C,D四點線路OA,OBOC,OD.

1)若正方形邊長為10米,求廣場的面積;

2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.

【答案】1100(平方米)(2(米)

【解析】

1)連接AB,廣場面積等于正方形面積加上弓形面積,計算得到答案.

2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,設(shè)∠OADθ0θ),OD,計算得到答案.

1)連接AB,∵AB10,∴正方形ABCD的面積為100,

OAOB10,∴△AOB為正三角形,則,

而圓的面積為100π,∴扇形AOB的面積為,

又三角形AOB的面積為.∴弓形面積為,

則廣場面積為100(平方米);

2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,

設(shè)∠OADθ0θ),則OH10sinθAH10cosθ,

DH|ADAH||2OHAH||20sinθ10cosθ|,

OD.

∴當θ時,.

4條線路OA,OB,OCOD總長度的最小值為(米).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的五個頂點都在球O的球面上,,,,是等邊三角形,若四棱錐體積的最大值,則球O的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為平行四邊形,∠DAB=45°,PD⊥平面ABCD,APBD.

1)證明:BC⊥平面PDB

2)若AB,PB與平面APD所成角為45°,求點B到平面APC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時尚,同時帶動了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時,可使得平均每只所需成本費用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價為元,滿足.若當產(chǎn)量為15000只時利潤最大,此時每只售價為300元,試求的值.(利潤銷售收入成本費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)().

1)若,求函數(shù)的單調(diào)區(qū)間;

2)當時,若函數(shù)上的最大值和最小值的和為1,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

1)根據(jù)散點圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:

西安公交六公司車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計該車隊每輛車每個月有萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要)年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中,,

參考公式:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知橢圓的離心率為,過點的直線交橢圓兩點,,且當直線垂直于軸時,.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,求弦長的取值范圍.

查看答案和解析>>

同步練習冊答案