【題目】已知橢圓G: 的兩個(gè)焦點(diǎn)分別為F1和F2 , 短軸的兩個(gè)端點(diǎn)分別為B1和B2 , 點(diǎn)P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當(dāng)b變化時(shí),給出下列三個(gè)命題: ①點(diǎn)P的軌跡關(guān)于y軸對(duì)稱;
②存在b使得橢圓G上滿足條件的點(diǎn)P僅有兩個(gè);
③|OP|的最小值為2,
其中,所有正確命題的序號(hào)是 .
【答案】①③
【解析】解:橢圓G: 的兩個(gè)焦點(diǎn)分別為
F1( ,0)和F2(﹣ ,0),
短軸的兩個(gè)端點(diǎn)分別為B1(0,﹣b)和B2(0,b),
設(shè)P(x,y),點(diǎn)P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|,
由橢圓定義可得,|PB1|+|PB2|=2a=2 >2b,
即有P在橢圓 + =1上.
對(duì)于①,將x換為﹣x方程不變,則點(diǎn)P的軌跡關(guān)于y軸對(duì)稱,
故①正確;
對(duì)于②,由圖象可得軌跡關(guān)于x,y軸對(duì)稱,且0<b< ,
則橢圓G上滿足條件的點(diǎn)P有4個(gè),
不存在b使得橢圓G上滿足條件的點(diǎn)P僅有兩個(gè),故②不正確;
對(duì)于③,由圖象可得,當(dāng)P滿足x2=y2,即有6﹣b2=b2,即b= 時(shí),
|OP|取得最小值,可得x2=y2=2,即有|OP|的最小值為2,故③正確.
所以答案是:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問(wèn)題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購(gòu)置貨車專門(mén)運(yùn)營(yíng)從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營(yíng)一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)該購(gòu)置幾輛貨
車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD的中點(diǎn),AE的延長(zhǎng)線與CD相交于點(diǎn)F.若AB=2, ,∠BAD=45°,則 =( )
A.
B.1
C.﹣
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=x3+ax2+x在R上是增函數(shù);命題q:若函數(shù)g(x)=ex﹣x+a在區(qū)間[0,+∞)沒(méi)有零點(diǎn).
(1)如果命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將集合M={1,2,3,…15}表示為它的5個(gè)三元子集(三元集:含三個(gè)元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個(gè)三元集的元素之和為;請(qǐng)寫(xiě)出滿足上述條件的集合M的5個(gè)三元子集 . (只寫(xiě)出一組)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列{an},記T={x|x=aj﹣ai , i<j},若數(shù)列{an}滿足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,則稱數(shù)列{an}具有性質(zhì)P(t). (Ⅰ)若數(shù)列{an}滿足 判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?
(Ⅱ)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(Ⅲ)已知{an}是各項(xiàng)為正整數(shù)的數(shù)列,且{an}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在整數(shù)N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生語(yǔ)言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語(yǔ)和語(yǔ)文某次考試成績(jī)進(jìn)行抽樣分析.將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(jī)(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫(xiě)出第五段抽取的學(xué)生編號(hào);
(Ⅱ)在這兩科成績(jī)差超過(guò)20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績(jī)均是語(yǔ)文成績(jī)高于英語(yǔ)成績(jī)的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語(yǔ)文和英語(yǔ)兩科成績(jī),寫(xiě)出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長(zhǎng)為 的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線PB與平面PCD所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com