【題目】某中學(xué)調(diào)查了某班全部50名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 6 |
未參加演講社團 | 6 | 30 |
(I)從該班隨機選1名同學(xué),求該同學(xué)至少參加上述一個社團的概率;
(II)在既參加書法社團又參加演講社團的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機選1人,求A1被選中且B1未被選中的概率.
【答案】(1) ;(2)
【解析】試題分析:(1)結(jié)合表中所給的數(shù)據(jù),根據(jù)古典概型概率求解;(2)由列舉法得到所有的試驗結(jié)果,進而得到A1被選中且B1未被選中的事件的個數(shù),由古典概型概率公式求解。
試題解析:
(Ⅰ)由調(diào)查數(shù)據(jù)可知,既未參加書法社團又未參加演講社團的有30人,故至少參加上述一個社團的共有50﹣30=20(人),所以從該班隨機選1名同學(xué),該同學(xué)至少參加上述一個社團的概率為P=.
(Ⅱ)從這5名男同學(xué)和3名女同學(xué)中各隨機選1人,其一切可能的結(jié)果組成的基本事件有:
{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15個.
根據(jù)題意,這些基本事件的出現(xiàn)是等可能的,事件“A1被選中且B1未被選中”所包含的基本事件有:{A1,B2},{A1,B3},共2個.
因此,A1被選中且B1未被選中的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計用電量落在[220,300)中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(第x周)和市場占有率(y﹪)的幾組相關(guān)數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | |
0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)上述線性回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預(yù)測在第幾周,該款旗艦機型市場占有率將首次超過 0.40﹪(最后結(jié)果精確到整數(shù)).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下:0001,0002,0003,…,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個部分.如果第一部分編號為0001,0002,…,0020,從中隨機抽取一個號碼為0015,則第40個號碼為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y∈R且滿足不等式組 ,當k=1時,不等式組所表示的平面區(qū)域的面積為 , 若目標函數(shù)z=3x+y的最大值為7,則k的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在人們都注重鍛煉身體,騎車或步行上下班的人越來越多,某學(xué)校甲、乙兩名教師每天可采用步行、騎車、開車三種方式上下班,步行到學(xué)校所用時間為1小時,騎車到學(xué)校所用時間為0.5小時,開車到學(xué)校所用時間為0.1小時,甲、乙兩人上下班方式互不影響.設(shè)甲、乙步行的概率分別為、,騎車的概率分別為、.
(1) 求甲、乙兩人到學(xué)校所用時間相同的概率;
(2) 設(shè)甲、乙兩人到學(xué)校所用時間和為隨機變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com