【題目】已知原命題是”.

1)試寫出原命題的逆命題,否命題,逆否命題,并判斷所寫命題的真假;

2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

【答案】1)逆命題:,假命題;否命題:,假命題;逆否命題:,真命題;(2

【解析】

1)根據(jù)逆命題,否命題,逆否命題的定義,可得逆命題,否命題,逆否命題,求解對應(yīng)不等式的范圍,以及原命題,逆否命題同真假,逆命題否命題同真假,可得解;

2)若的必要不充分條件,則不等的解構(gòu)成的集合為的解集的真子集.,三種情況討論即得解.

1)根據(jù)逆命題,否命題,逆否命題的定義,

逆命題:

否命題:;

逆否命題:”.

即:;

即:

可得:原命題是真命題,

逆命題是假命題,

根據(jù)原命題,逆否命題同真假,逆命題否命題同真假,可得:逆否命題為真,否命題為假.

2)若的必要不充分條件,則不等式的解構(gòu)成的集合為的解集的真子集.

對應(yīng)方程的根為

,不等式的解為,不成立;

,不等式的解為,不成立;

,不等式的解為,若構(gòu)成的集合是構(gòu)成的集合的真子集,則.

綜上:實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱的底面邊長為,側(cè)棱長為1,求:

(1)直線與直線所成角的余弦值;

(2)平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線和曲線的極坐標(biāo)方程;

2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于、兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正方形的邊長為4,,,把四邊形沿折起,使得平面,的中點(diǎn),如圖②

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以為首項(xiàng)的數(shù)列滿足:

1)當(dāng)時,求數(shù)列的通項(xiàng)公式;

2)當(dāng),時,試用表示數(shù)列100項(xiàng)的和;

3)當(dāng)是正整數(shù)),,正整數(shù)時,判斷數(shù)列,,,是否成等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)坐標(biāo)是,過點(diǎn)且垂直于長軸的直線交橢圓于兩點(diǎn),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),問三角形內(nèi)切圓面積是否存在最大值?若存在,請求出這個最大值及此時直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)當(dāng)時,求函數(shù)上的最大值和最小值;

2)求函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)的導(dǎo)函數(shù)上有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線軸相交于點(diǎn),且.

1)求證:

2)求點(diǎn)的橫坐標(biāo);

3)過點(diǎn)分別作拋物線的切線,兩條切線交于點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊答案