求證:以過拋物線焦點的弦為直徑的圓必與相切(用分析法證)

 

【答案】

見解析。

【解析】

試題分析:

證明:(如圖)過焦點,作垂直準線,取的中點,作垂直準線.

要證明以為直徑的圓與準線相切,

只需證

由拋物線的定義:,

所以,

因此只需證

根據(jù)梯形的中位線定理可知上式是成立的.

所以,以過焦點的弦為直徑的圓必與相切.

考點:本題主要考查分析法的定義和方法、拋物線定義。

點評:數(shù)形結(jié)合,綜合應用解析幾何知識。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=4,A(-1,0),B(1,0),直線l與圓O切于點S(l不垂直于x軸),拋物線過A、B兩點且以l為準線,以F為焦點.
(1)當點S在圓周上運動時,求證:|FA|+|FB|為定值,并求出點F的軌跡C方程;
(2)曲線C上有兩個動點M,N,中點D在直線y=l上,若直線l′經(jīng)過點D,且在l′上任取一點P(不同于D點),都存在實數(shù)λ,使得
DP
=λ(
MP
|
MP
|
+
NP
|
NP
|
)
,證明:直線l′必過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限.
(Ⅰ)求證:以線段FA為直徑的圓與y軸相切;
(Ⅱ)若
FA
=λ1
AP
,
BF
=λ2
FA
λ1
λ2
∈[
1
4
,
1
2
]
,求λ2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是橢圓
x2
4
+
y2
3
=1的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線l交曲線C于x軸上方兩個不同點P、Q,點P關(guān)于x軸的對稱點為M,設
F1P
=λ
F1Q

(I)若λ∈[2,4],求直線L的斜率k的取值范圍;
(II)求證:直線MQ過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省六校高三5月高考模擬考試理科數(shù)學試卷(解析版) 題型:解答題

如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。

(1)求證:以AF為直徑的圓與x軸相切;

(2)設拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;

(3)設過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案