【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且(2b﹣a)cosC=ccosA.
(1)求角C的大;
(2)若sinA+sinB=2 sinAsinB,c=3,求△ABC的面積.

【答案】
(1)解:由于(2b﹣a )cosC=ccosA,由正弦定理得(2sinB﹣sinA)cosC=sinCcosA,

即2sinBcosC=sinAcosC+sinCcosA,即2sinBcosC=sin(A+C),可得:2sinBcosC=sinB,

因為sinB≠0,所以cosC= ,

因為0<C<π,所以C=


(2)解:設△ABC外接圓的半徑為R 由題意得2R= =2 ,

由sinA+sinB=2 sinAsinB得,2R(a+b)=2 ab,即a+b= ab,①

由余弦定理得,a2+b2﹣ab=9,即(a+b)﹣3ab﹣9=0,②

將①式代入②得2(ab)2﹣3ab﹣9=0,解得 ab=3或ab=﹣ (舍去),

所以SABC= absinC=


【解析】(1)由正弦定理化簡已知等式可得:(2sinB﹣sinA)cosC=sinCcosA,利用三角形內角和定理整理可得2sinBcosC=sinB,由sinB≠0,解得cosC= ,結合范圍0<C<π,可求C的值.(2)設△ABC外接圓的半徑為R 由題意得2R= =2 ,由sinA+sinB=2 sinAsinB得a+b= ab,由余弦定理得(a+b)﹣3ab﹣9=0,聯(lián)立解得ab的值,利用三角形面積公式即可得解.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】本小題12分)

調查某地區(qū)老年人是否需要志愿者幫助,用簡單隨機抽樣方法從該地調查500位老年人,結果如下:

性別
是否需要



需要

40

30

不需要

160

270

估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

附:

PK2≥k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設單位向量 對于任意實數(shù)λ都有| + |≤| ﹣λ |成立,則向量 的夾角為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中ABC﹣A1B1C1中,點A1在平面ABC內的射影D為棱AC的中點,側面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.

(1)證明:AC1⊥平面A1BC;
(2)求三棱錐B﹣A1B1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移個單位長度,可以使f(x)成為奇函數(shù),則的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形內接于同一個直角三角形ABC中,如圖所示,設,若兩正方形面積分別為=441,=440,則=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.求證:

(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn為數(shù)列{an}的前n項和,Sn=(﹣1)nan ,n∈N* , 則
①a3=;
②S1+S2+…+S100=

查看答案和解析>>

同步練習冊答案