【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖或稱主視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖或稱左視圖是一個底邊長為6、高為4的等腰三角形

1求該幾何體的體積

2求該幾何體的側(cè)面積

【答案】1;2

【解析】

試題分析:由題設(shè)可知,幾何體是一個高為的四棱錐,其底面是長、寬分別為的矩形,正側(cè)面及其相對側(cè)面均為底邊長為,高為的等腰三角形,左、右側(cè)面均為底邊長為、高為的等腰三角形,分析出圖形之后,再利用公式求解即可

試題解析:由三視圖可知該幾何體是一個底面邊長分別為6、8的矩形,高為4的四棱錐設(shè)底面矩形為如圖所示,,高

1

2設(shè)四棱錐側(cè)面、是全等的等腰三角形,側(cè)面、也是全等的等腰三角形,

中,邊上的高為

中,邊上的高為

所以此幾何體的側(cè)面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.

(1)寫出的參數(shù)方程;

(2)設(shè)直線的交點為,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的奇函數(shù),且對任意a、b,當(dāng)時,都有.

1,試比較的大小關(guān)系;

2對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國西部某省4A級風(fēng)景區(qū)內(nèi)住著一個少數(shù)民族村,該村投資了800萬元修復(fù)和加強民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個月內(nèi)(每月按30天計算)每天的旅游人數(shù)f(x)與第x天近似地滿足 (千人),且參觀民俗文化村的游客人均消費g(x)近似地滿足g(x)=143﹣|x﹣22|(元).

(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;

(2)若以最低日收入的20%作為每一天的計量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的一點與平面外的一點的連線與這個平面內(nèi)的直線的關(guān)系是:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,過點的直線與原點的距離為

(1)求橢圓的方程;

(2)設(shè)為橢圓的左、右焦點,過作直線交橢圓于 兩點,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

1)當(dāng)時,解不等式;

2)若存在實數(shù),使得不等式成立,求實的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的焦點到準線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點為在第一象限的交點為,為坐標(biāo)原點,且的面積為

1求橢圓的標(biāo)準方程;

2若過點的直線交拋物線兩點

求證:恒為鈍角;

射線分別交橢圓兩點,記的面積分別是,問是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6月23日15時前后,江蘇鹽城市阜寧、射陽等地突遭強冰雹、龍卷風(fēng)雙重災(zāi)害襲擊,風(fēng)力達12級.災(zāi)害發(fā)生后,有甲、乙、丙、丁4個輕型救援隊從A,B,C,D四個不同的方向前往災(zāi)區(qū).已知下面四種說法都是正確的.

(1)甲輕型救援隊所在方向不是C方向,也不是D方向;

(2)乙輕型救援隊所在方向不是A方向,也不是B方向;

(3)丙輕型救援隊所在方向不是A方向,也不是B方向;

(4)丁輕型救援隊所在方向不是A方向,也不是D方向;

此外還可確定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向,有下列判斷:

甲所在方向是B方向;乙所在方向是D方向;丙所在方向是D方向;丁所在方向是C方向.

其中判斷正確的序號是 .

查看答案和解析>>

同步練習(xí)冊答案