【題目】如圖,在ABC中,B90°,ABBC2PAB邊上一動(dòng)點(diǎn),PDBCAC于點(diǎn)D,現(xiàn)將PDA沿PD翻折至PDA1,EA1C的中點(diǎn).

1)若PAB的中點(diǎn),證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求四棱錐A1PBCD的體積.

【答案】(1)詳見(jiàn)解析(2)

【解析】

1)根據(jù)線(xiàn)面平行的判定定理可知,需證明線(xiàn)線(xiàn)平行,取的中點(diǎn),連接,可證明四邊形是平行四邊形,可證明,(2)根據(jù)面面垂直,可證明平面,那么.

1)證明:令的中點(diǎn)為,連接,.因?yàn)?/span>的中點(diǎn)且,

所以的中位線(xiàn),所以,.

因?yàn)?/span>的中點(diǎn),F的中點(diǎn),所以的中位線(xiàn),所以,且,于是有,

所以四邊形為平行四邊形,所以,

平面,平面

所以有平面.

2)解:因?yàn)?/span>平面,所以.

又因?yàn)?/span>的中點(diǎn),所以,

的中點(diǎn).可得,的中點(diǎn).

因?yàn)樵?/span>,,沿翻折至,且平面平面,

利用面面垂直的性質(zhì)可得平面

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為激發(fā)學(xué)生學(xué)習(xí)的興趣,老師上課時(shí)在黑板上寫(xiě)出三個(gè)集合: ;然后叫甲、乙、丙三位同學(xué)到講臺(tái)上,并將中的數(shù)告訴了他們,要求他們各用一句話(huà)來(lái)描述,以便同學(xué)們能確定該數(shù),以下是甲、乙、丙三位同學(xué)的描述:

甲:此數(shù)為小于6的正整數(shù);乙:AB成立的充分不必要條件;

丙:AC成立的必要不充分條件

若老師評(píng)說(shuō)這三位同學(xué)都說(shuō)得對(duì),則中的數(shù)為 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線(xiàn)lt為參數(shù))與曲線(xiàn)Cθ為參數(shù))相交于不同的兩點(diǎn)AB

)若α,求線(xiàn)段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線(xiàn)l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p,;命題q:方程表示雙曲線(xiàn).

⑴若命題p為真命題,求實(shí)數(shù)m的取值范圍;

⑵若命題為真命題,為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線(xiàn)方程;

(2)若對(duì)于任意的正數(shù),恒成立,求實(shí)數(shù)的值;

(3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,B90°,ABBC2,PAB邊上一動(dòng)點(diǎn),PDBCAC于點(diǎn)D,現(xiàn)將PDA沿PD翻折至PDA1EA1C的中點(diǎn).

1)若PAB的中點(diǎn)證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=axcosxa≠0

1)若函數(shù)fx)為單調(diào)函數(shù),求a的取值范圍;

2)若x∈[0,2π],求:當(dāng)a時(shí),函數(shù)fx)僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(nN*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2b312b3a42a1,S1111b4.

(1){an}{bn}的通項(xiàng)公式;

(2)求數(shù)列{a2nbn}的前n項(xiàng)和(nN*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華民族傳統(tǒng)文化,某中學(xué)學(xué)生會(huì)對(duì)本校高一年級(jí)1000名學(xué)生課余時(shí)間參加傳統(tǒng)文化活動(dòng)的情況,隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

參加場(chǎng)數(shù)

0

1

2

3

4

5

6

7

參加人數(shù)占調(diào)查人數(shù)的百分比

8%

10%

20%

26%

18%

12%

4%

2%

估計(jì)該校高一學(xué)生參加傳統(tǒng)文化活動(dòng)情況正確的是().

A. 參加活動(dòng)次數(shù)是3場(chǎng)的學(xué)生約為360B. 參加活動(dòng)次數(shù)是2場(chǎng)或4場(chǎng)的學(xué)生約為480

C. 參加活動(dòng)次數(shù)不高于2場(chǎng)的學(xué)生約為280D. 參加活動(dòng)次數(shù)不低于4場(chǎng)的學(xué)生約為360

查看答案和解析>>

同步練習(xí)冊(cè)答案