【題目】設(shè)是兩條不同的直線,是兩個不同的平面,有下列正確命題的序號是________.
(1)若m∥,n∥,則m∥n, (2)若則
(3)若,且,則; (4)若,,則
【答案】(3)(4)
【解析】
若,則與可能平行,相交或異面,故(1)錯誤;若,則或,故(2)錯誤;若,且,根據(jù)法向量的性質(zhì)可得,故(3)正確;若,由面面平行的性質(zhì),可得故(4)正確,故答案為(3)(4).
【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.
科目:高中數(shù)學 來源: 題型:
【題目】信息科技的進步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟效益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市A,B兩校組織了一次英語筆試(總分120分)聯(lián)賽,兩校各自挑選了英語筆試成績最好的100名學生參賽,成績不低于115分定義為優(yōu)秀.賽后統(tǒng)計了所有參賽學生的成績(都在區(qū)間內(nèi)),將這些數(shù)據(jù)分成4組:得到如下兩個頻率分布直方圖:
(1)分別計算A,B兩校聯(lián)賽中的優(yōu)秀率;
(2)聯(lián)賽結(jié)束后兩校將根據(jù)學生的成績發(fā)放獎學金,已知獎學金y(單位:百元)與其成績t的關(guān)系式為
①當時,試問A,B兩校哪所學校的獲獎人數(shù)更多?
②當時,若以獎學金的總額為判斷依據(jù),試問本次聯(lián)賽A,B兩校哪所學校實力更強?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖,根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.各年的月接待游客量高峰期大致在7,8月份
B.年接待游客量逐年增加
C.月接待游客量逐月增加
D.各年1月至6月的月接待游客量相對7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:2x﹣y+2=0與l2:x+y+4=0.
(1)若一條光線從l1與l2的交點射出,與x軸交于點P(3,0),且經(jīng)x軸反射,求反射光線所在直線的方程;
(2)若直線l經(jīng)過點P(3,0),且它夾在直線l1與l2之間的線段恰被點P平分,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),.
(1)判斷函數(shù):在的單調(diào)性;
(2)對于區(qū)間上的任意不相等實數(shù)、,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)符號表示不超過x的最大整數(shù),例如定義函數(shù)則下列命題正確中的是__________
(1)函數(shù)的最大值為1;
(2)函數(shù)是增函數(shù);
(3)方程有無數(shù)個根;
(4)函數(shù)的最小值為0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com