【題目】已知等差數(shù)列{an}滿足:a3=4,a5+a7=14,{an}的前n項(xiàng)和為Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
∵a3=4,a5+a7=14,
∴a1+2d=4,2a1+10d=14,
∴a1=2,d=1,
∴an=2+(n﹣1)×1=n+1,
Sn=n×2+ n(n﹣1)×1= ,
即an=n+1,Sn= ;
(2)解:∵an=n+1,∴an2﹣1=(n+1)2﹣1=n(n+2),
∴bn= = ( ﹣ ),
∴Tn=b1+b2+b3+b4+b5+…+bn﹣2+bn﹣1+bn
= (1﹣ + ﹣ + ﹣ + ﹣ + ﹣ +…+ ﹣ + ﹣ + ﹣ )
= (1+ ﹣ ﹣ )= .
【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式,列出方程,解出首項(xiàng)和公差,從而寫出通項(xiàng)公式和求和公式;(2)根據(jù){an}的通項(xiàng),化簡(jiǎn)bn , 并拆成兩項(xiàng)的差,注意前面乘一個(gè)系數(shù),然后運(yùn)用裂項(xiàng)相消求和,應(yīng)注意消去哪些項(xiàng),保留哪些項(xiàng),可以多寫幾項(xiàng),找出規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線L經(jīng)過點(diǎn)P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線L的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,其前項(xiàng)和為.
(1)若對(duì)任意的, , , 組成公差為4的等差數(shù)列,且,求;
(2)若數(shù)列是公比為()的等比數(shù)列, 為常數(shù),
求證:數(shù)列為等比數(shù)列的充要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=alnx+1(a>0).
(1)當(dāng)x>0時(shí),求證: ;
(2)在區(qū)間(1,e)上f(x)>x恒成立,求實(shí)數(shù)a的范圍.
(3)當(dāng) 時(shí),求證: (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(rùn)(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)問:年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤(rùn)最大?
注:年利潤(rùn)=年銷售收入-年總成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn , 已知a1+a4=﹣ ,且對(duì)于任意的n∈N*有Sn , Sn+2 , Sn+1成等差數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=n(n∈N+),記 ,若(n﹣1)2≤m(Tn﹣n﹣1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解小學(xué)生的體能情況,抽取了某校一個(gè)年級(jí)的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個(gè)小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達(dá)標(biāo),試估計(jì)該年級(jí)學(xué)生跳繩測(cè)試的達(dá)標(biāo)率.
(3)在這次測(cè)試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?試求出中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C: =1,設(shè)R(x0 , y0)是橢圓C上的任一點(diǎn),從原點(diǎn)O向圓R:(x﹣x0)2+(y﹣y0)2=8作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1 , k2 , 求證:2k1k2+1=0;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com