以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k,(k≠0)的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*),

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.

答案:
解析:

  證明:

  (1)由條件得顯然

    1分

  (若,則,那么點(diǎn)Pn在一次函數(shù)的圖象上,與條件不符)

  ∵為常數(shù),  5分

  ∴所以數(shù)列是公比為2的等比數(shù)列  7分

  (2)由(1)得:

  ,  9分

  ∴  10分

  ∵,

  ∴

    14分

  ∴

  由代入  16分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件bn=an+1-an(n∈N*,b1≠0).

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007屆東莞市高三文科數(shù)學(xué)高考模擬題(二) 題型:044

以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N,b1≠0),

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以數(shù)列{an}的任意兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+8的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*,b1≠0)且a1=1.

(文)求數(shù)列{bn}的前n項(xiàng)和Tn.

(理)求數(shù)列{an}的前n項(xiàng)和Sn和數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以數(shù)列{an}的任意相鄰的兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*,b1≠0).

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案