【題目】(本小題滿分14分)
在正三棱柱中,點(diǎn)是的中點(diǎn),.
(1)求證:∥平面;
(2)試在棱上找一點(diǎn),使.
【答案】(1)詳見解析(2)為的中點(diǎn).
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理進(jìn)行證明,即先從線線平行出發(fā),這可利用三角形中位線性質(zhì)進(jìn)行證明:連接,交于點(diǎn),則、分別是、的中點(diǎn),所以∥.從而可證∥平面.(2)找一點(diǎn)目的是證線線垂直,故從垂直角度找:利用正方形性質(zhì),邊的中點(diǎn)與對邊頂點(diǎn)連線存在垂直關(guān)系,故取為的中點(diǎn).再根據(jù)線面垂直判定及性質(zhì)定理進(jìn)行論證.
試題解析:(1)證明:連接,交于點(diǎn), 連接.
∵、分別是、的中點(diǎn),
∴∥. 3分
∵平面,平面,
∴∥平面. 6分
(2)為的中點(diǎn). 7分
證明如下:
∵在正三棱柱中,,∴四邊形是正方形.
∵為的中點(diǎn),是的中點(diǎn),∴, 9分
∴,.
又∵,
,∴. 11分
∵是正三角形,是的中點(diǎn),
∴.
∵平面平面, 平面平面,平面,
∴平面.
∵平面,
∴. 13分
∵,
∴平面.
∵平面,
∴. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017四川宜賓二診】已知函數(shù)且.
(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))
(II)設(shè)函數(shù),當(dāng)時,曲線與有兩個交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知函數(shù),設(shè)關(guān)于的方程有個不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,已知橢圓:,其左右焦點(diǎn)為及,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記△的面積為,△(為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率為.
(1)求a,b的值.
(2)設(shè)P是橢圓C長軸上的一個動點(diǎn),過點(diǎn)P作斜率為k的直線l交橢圓C于A、B兩點(diǎn).
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點(diǎn)P的位置無關(guān),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,設(shè)命題p:函數(shù)f(x)=x2﹣2ax+1﹣2a在區(qū)間[0,1]上與x軸有兩個不同的交點(diǎn);命題q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如表:
x | ﹣ | ||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)根據(jù)(1)的結(jié)果:
( i)當(dāng)x∈[0, ]時,方程f(3x)=m恰有兩個不同的解,求實(shí)數(shù)m的取值范圍;
( ii)若α,β是銳角三角形的兩個內(nèi)角,試比較f(sinα)與f(cosβ)的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A( +1,0),B(0,2).若直線l:y=k(x﹣1)+1與線段AB相交,則直線l傾斜角α的取值范圍是( )
A.[ , ]
B.[0, ]
C.[0, ]∪[ ,π)
D.[ ,π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com