【題目】寒假即將到來,某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每在支出20元的各種費用(人工費,消耗費用等等).受市場調(diào)控,每個房間每天的房價不得高于340.設(shè)每個房間的房價每天增加x(x10的正整數(shù)倍)

(1)設(shè)賓館一天的利潤為W, Wx的函數(shù)關(guān)系式;

(2)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

【答案】1;,且x10的正整數(shù)倍;(2)一天住34個房間時,最大利潤是10880.

【解析】

1)每天總收入減去支出即利潤,列出函數(shù)關(guān)系;

2)根據(jù)第一問結(jié)合二次函數(shù)性質(zhì)即可求解.

1)每個房間的房價每天增加x(x10的正整數(shù)倍),,

入住房間個,支出,單價元,

所以利潤

,,且x10的正整數(shù)倍;

2)由(1)可得,,,且x10的正整數(shù)倍

考慮函數(shù),在單調(diào)遞增,

所以當(dāng)時,即房價為340元時利潤最大為10880元,此時,一天訂房數(shù)為34間,

所以一天住34個房間時,最大利潤是10880

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點與兩個定點,的距離的比為.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于兩點,求線段長度的最小值;

(3)已知圓的圓心為,且圓軸相切,若圓與曲線有公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1正方體中,點,分別為邊,的中點,將沿所在的直線進(jìn)行翻折,將沿所在直線進(jìn)行翻折,在翻折的過程中,下列說法錯誤的是( )

A. 無論旋轉(zhuǎn)到什么位置,、兩點都不可能重合

B. 存在某個位置,使得直線與直線所成的角為

C. 存在某個位置,使得直線與直線所成的角為

D. 存在某個位置,使得直線與直線所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點是橢圓上的任意一點,直線與橢圓交于,兩點,直線,的斜率都存在.

1)若直線過原點,求證:為定值;

2)若直線不過原點,且,試探究是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中, ACBC,四邊形ABED是正方形,平面ABED⊥平面ABC,F,G,H分別為BD,EC,BE的中點,求證:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種室內(nèi)植物的株高(單位:)與與一定范圍內(nèi)的溫度(單位:)有,現(xiàn)收集了該種植物的組觀測數(shù)據(jù),得到如圖所示的散點圖:

現(xiàn)根據(jù)散點圖利用建立關(guān)于的回歸方程,令,,得到如下數(shù)據(jù):

的相關(guān)系數(shù)分別為,其中

1)用相關(guān)系數(shù)說明哪種模型建立關(guān)于的回歸方程更合適;

2)(i)根據(jù)(1)的結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

ii)已知這種植物的利潤(單位:千元)與的關(guān)系為,當(dāng)何值時,利潤的預(yù)報值最大.

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,

相關(guān)系數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:

車尾號

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨立.

I)求該單位在星期一恰好出車一臺的概率.

II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是橢圓上的動點,、為橢圓的左、右焦點,O為坐標(biāo)原點,若M的角平分線上的一點,且F1MMP,則|OM|的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①命題“”的否定是“”;

②已知為兩個命題,若為假命題,則為真命題;

③“”是“”的充分不必要條件;

④“若”的逆否命題為真命題.

其中 真命題的序號是__________.(寫出所有滿足題意的序號)

查看答案和解析>>

同步練習(xí)冊答案