對(duì)于函數(shù)y=f(x)(x∈D,D是此函數(shù)的定義域)若同時(shí)滿足下列條件:
。Ⅰ)f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
(Ⅱ)存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域?yàn)?/span>[a,b];那么,把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=符合條件(Ⅱ)的區(qū)間[a,b];
。2)判斷函數(shù)f(x)=(x∈)是否為閉函數(shù)?并說明理由;
。3)若y=是閉函數(shù),求實(shí)數(shù)k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
。Ⅰ)f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
。Ⅱ)存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域?yàn)?/span>[a,b];那么,把y=f(x)(x∈D)叫閉函數(shù).
。1)求閉函數(shù)y=符合條件(Ⅱ)的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=(x∈)是否為閉函數(shù)?并說明理由;
(3)若y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西贛州會(huì)昌中學(xué)高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(帶解析) 題型:填空題
對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且“拐點(diǎn)”就是對(duì)稱中心.”請(qǐng)你根據(jù)這一發(fā)現(xiàn),請(qǐng)回答問題:
若函數(shù),
則= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西贛州會(huì)昌中學(xué)高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且“拐點(diǎn)”就是對(duì)稱中心.”請(qǐng)你根據(jù)這一發(fā)現(xiàn),請(qǐng)回答問題:
若函數(shù),
則= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修1函數(shù)的概念練習(xí)卷(解析版) 題型:選擇題
對(duì)于函數(shù)y=f(x),以下說法正確的有…( )
①y是x的函數(shù)
②對(duì)于不同的x,y的值也不同
③f(a)表示當(dāng)x=a時(shí)函數(shù)f(x)的值,是一個(gè)常量
④f(x)一定可以用一個(gè)具體的式子表示出來
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com