【題目】已知不等式ax2﹣bx﹣1>0的解集是 ,則不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

【答案】B
【解析】解:由題意ax2﹣bx﹣1=0的兩根為﹣ ,﹣ ,
∴﹣ +(﹣ )= ,﹣ ×(﹣ )=﹣
解得a=﹣6,b=5,
∴x2﹣bx﹣a≥0為x2﹣5x+6≥0,其解集為x≤2或x≥3,
故不等式的解集為{x|x≤2或x≥3},
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈(﹣∞,0)時,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點為A(﹣4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.

(1)求橢圓C的方程;
(2)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標;若不存在說明理由;
(3)若過O點作直線l的平行線交橢圓C于點M,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個商場經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計,每位顧客采用的分期付款次數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中如像招數(shù)五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升。其大意為官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3,在該問題中第3天共分發(fā)大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,
(1)求tanA;
(2)若BC=1,求ACAB的最大值,并求此時角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 有兩個極值點,其中 ,,且,則方程 的實根個數(shù)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求的取值范圍;

(Ⅱ)證明:當(dāng)時,關(guān)于的不等式上恒成立.

查看答案和解析>>

同步練習(xí)冊答案