(2011•寧波模擬)設f(x)=
ex(x≤0)
ln x(x>0)
,則f[f(
1
3
)]=
1
3
1
3
分析:因為
1
3
>0
將其代入解析式lnx求出f(
1
3
)的值并判斷出其是小于0的,將f(
1
3
)的值代入解析式ex,求出值.
解答:解:因為f(x)=
ex(x≤0)
ln x(x>0)
,
所以f(
1
3
)=ln
1
3
<0,
所以f[f(
1
3
)]=f(ln
1
3
)=eln
1
3
=
1
3
,
故答案為
1
3
點評:本題考查求分段函數(shù)的函數(shù)的值,應該先判斷出自變量在哪一段中,然后將其代入相應段的解析式,求出值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•寧波模擬)已知某商場新進3000袋奶粉,為檢查其三聚氰胺是否超標,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取150袋檢查,若第一組抽出的號碼是11,則第六十一組抽出的號碼為
1211
1211

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寧波模擬)設
OM
=(1,
1
2
),
ON
=(0,1)
,O為坐標原點,動點P(x,y)滿足0≤
OP
OM
≤1,0≤
OP
ON
≤1
,則z=y-x的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寧波模擬)如圖,△ABC中,
GA
+
GB
+
GC
=
O
CA
=
a
,
CB
=
b
,若
CP
=m
a
,
CQ
=n
b
,CG∩PQ=H,
CG
=2
CH
,則
1
m
+
1
n
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寧波模擬)已知:圓x2+y2=1過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點,與橢圓有且僅有兩個公共點:直線y=kx+m與圓x2+y2=1相切,與橢圓
x2
a2
+
y2
b2
=1
相交于A,B兩點記λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求橢圓的方程;
(Ⅱ)求k的取值范圍;
(Ⅲ)求△OAB的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寧波模擬)集合P={n|n=lnk,k∈N*},若a,b∈P,則a⊕b∈P,那么運算⊕可能是(  )

查看答案和解析>>

同步練習冊答案