精英家教網 > 高中數學 > 題目詳情

【題目】已知函數y=f(x)是定義域為R的偶函數,當x≥0時,f(x)= ,若關于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7個不同實數根,則a的取值范圍是

【答案】
【解析】解:由題意,f(x)在(﹣∞,﹣2]和[0,2)上是減函數,在(﹣2,0]和[2,+∞)上是增函數;
∴x=0時,函數取極大值1,x=±2時,取極小值 ,且|x|≥16時,f(x)≥1,則f(x)的圖象如下所示:

由[f(x)]2+af(x)﹣a﹣1=0得[f(x)﹣1][f(x)+a+1]=0;
∴f(x)=1或﹣a﹣1;
∵關于x的方程[f(x)]2+af(x)﹣a﹣1=0有7個不同實數根;
;
;
∴a的取值范圍為
所以答案是:
【考點精析】解答此題的關鍵在于理解函數奇偶性的性質的相關知識,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區(qū)2008年至2016年糧食產量的部分數據如下表:

(1)求該地區(qū)2008年至2016年的糧食年產量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產量的變化情況,并預測該地區(qū) 2018年的糧食產量.

附:回歸直線的斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的有_________.

①函數的一個對稱中心為

②在中, 的中點,則;

③在中, 的充要條件;

④定義,已知,則的最大值為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】證明.
(1)用數學歸納法證明:12+22+32+…+n2= ,n是正整數;
(2)用數學歸納法證明不等式:1+ + +…+ <2 (n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設X是一個離散型隨機變量,其分布列如圖,則q等于(

x

﹣1

0

1

P

0.5

1﹣2q

q2


A.1
B.1±
C.1﹣
D.1+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,學習小組成員發(fā)現,學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到如下數據:
(1)根據表中的數據,能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?
(2)根據表中數據,在調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數為X,求X的分布列和數學期望.

年級名次
是否近視

1~50

951~1000

近視

41

32

不近視

9

18

附:P(K2≥3.841=0.05)K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將參加數學競賽的1000名學生編號如下:0001,0002,003,…,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的方法把編號分成50個部分,如果第一部分編號為0001,0002,0003,…,0020,第一部分隨機抽取一個號碼為0013,那么抽取的第40個號碼

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形, , , ,且, , 的中點。

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)求f(x)的單調區(qū)間;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程;
(3)求證:對任意的正數a與b,恒有

查看答案和解析>>

同步練習冊答案