分析:運(yùn)用數(shù)學(xué)歸納法,分兩步加以論證:①當(dāng)n=1時(shí),可得原等式為
=
,顯然成立;②設(shè)當(dāng)n=k時(shí)原等式成立,即有
+
+…+
=
+
+…+
,將此代入n=k+1的式子并利用
=
-
進(jìn)行化簡(jiǎn),可證出當(dāng)n=k+1的式子左右兩邊也相等.最后由①②相結(jié)合,可得原等式以任意的n∈N
*恒成立.
解答:解:①當(dāng)n=1時(shí),左邊=
=
,右邊=
=
,等式成立.
②假設(shè)當(dāng)n=k時(shí)等式成立,即
+
+…+
=
+
+…+
.
則當(dāng)n=k+1時(shí),
+
+…+
+
=
+
+…+
+
=
+
+…+
+(
+
)
=
+
+…+
+(
+
-
)
=
+
+…+
+
+
=
+
+…+
+
,
即當(dāng)n=k+1時(shí),等式成立.
根據(jù)(1)(2)可知,對(duì)一切n∈N
*,原等式成立.
點(diǎn)評(píng):本題給出一個(gè)恒等式,要求我們利用數(shù)學(xué)歸納法進(jìn)行證明.著重考查了數(shù)列的通項(xiàng)寫法、裂項(xiàng)法證明等式和數(shù)學(xué)歸納法的一般方法等知識(shí),屬于中檔題.