【題目】已知圓過點,且與圓關(guān)于直線對稱.
(1)求兩圓的方程;
(2)若直線與直線平行,且截距為7,在上取一橫坐標(biāo)為的點,過點作圓的切線,切點為,設(shè)中點為.
(。┤,求的值;
(ⅱ)是否存在點,使得?若存在,求點的坐標(biāo);若不存在,請說明理由.
【答案】(1),;(2)(i),(ii)答案見解析.
【解析】分析:(1)設(shè)點,由對稱性結(jié)合題意可得即,由兩點之間距離公式可知圓的半徑,則,;
(2)由題可知,,
(ⅰ)由題意可得四邊形為正方形,結(jié)合題意可得關(guān)于a的方程,解方程有.
(ⅱ)由題意可知,由題意可得滿足題意時有,該方程無解,則不存在點,使得.
詳解:(1)設(shè)點,因為關(guān)于直線對稱,且,
根據(jù)直線與直線垂直,中點在直線上,
得解得即,
所以,,
所以,;
(2)由題可知,,
(ⅰ)∵,∴,
所以四邊形為正方形,
∵,∴,
∴,解得.
(ⅱ)∵,∴,
又∵,,
∴,
∵,∴,
∴,
∴,整理得,
∵,所以方程無解,
所以不存在點,使得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為( )
A. 尺
B. 尺
C. 尺
D. 尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩支排球隊進行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是 ,其余每局比賽甲隊獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對方得1分,求乙隊得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的焦點在軸上,離心率為,拋物線的焦點在軸上, 的中心和的頂點均為原點,點在上,點在上,
(1)求曲線, 的標(biāo)準(zhǔn)方程;
(2)請問是否存在過拋物線的焦點的直線與橢圓交于不同兩點,使得以線段為直徑的圓過原點?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N* .
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)anbn= ,求數(shù)列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點,頂點B的坐標(biāo)為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.
(1)若點C的坐標(biāo)為( , ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com