【題目】如圖,某植物園內(nèi)有一塊圓形區(qū)域,在其內(nèi)接四邊形內(nèi)種植了兩種花卉,其中區(qū)域內(nèi)種植蘭花,區(qū)域內(nèi)種植丁香花,對(duì)角線BD是一條觀賞小道.測(cè)量可知邊界,, .
(1)求觀賞小道BD的長及種植區(qū)域的面積;
(2)因地理?xiàng)l件限制,種植丁香花的邊界BC,CD不能變更,而邊界AB,AD可以調(diào)整,使得種植蘭花的面積有所增加,請(qǐng)?jiān)?/span>BAD上設(shè)計(jì)一點(diǎn)P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個(gè)面積的最大值.
【答案】(1),面積為;(2)當(dāng)為等邊三角形時(shí),新區(qū)域的面積最大,最大值為.
【解析】
(1)設(shè),利用余弦定理和圓的內(nèi)接四邊形對(duì)角互補(bǔ),建立方程求解即可;
(2)利用同弧所對(duì)的圓周角相等,得,設(shè),,則,接著利用余弦定理和基本不等式可求最大值.
(1)設(shè),則由余弦定理得,
.
由四邊形是圓內(nèi)接四邊形得,
故,即,
解得(負(fù)值舍去),即.
從而,所以,,
故.
答:觀賞小道BD的長為,種植區(qū)域的面積為.
(2)由(1)及“同弧所對(duì)的圓周角相等”得.
設(shè),,
則.
在中,由余弦定理有
,
故(當(dāng)且僅當(dāng)時(shí)等號(hào)成立).
而,
因此,種植區(qū)域改造后的新區(qū)域的面積的最大值為.
答:當(dāng)為等邊三角形時(shí),新區(qū)域的面積最大,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,.
(Ⅰ)證明:點(diǎn)在底面上的射影必在直線上;
(Ⅱ)若二面角的大小為,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知等邊的邊長為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.
(1)求證:平面平面;
(2)給出三個(gè)條件:①;②二面角大小為;③.在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題的條件中,并作答:在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為,若存在,求出的長;若不存在,請(qǐng)說明理由.注:如果多個(gè)條件分別解答,按第一個(gè)解答給分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天上有些恒星的亮度是會(huì)變化的,其中一種稱為造父(型)變星,本身體積會(huì)膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784年.
上圖為一造父變星的亮度隨時(shí)間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮?xí)r視星等,分別約是( )
A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺(tái),記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F2的直線分別交雙曲線左、右兩支于點(diǎn)P,Q,點(diǎn)M為線段PQ的中點(diǎn),若P,Q,F1都在以M為圓心的圓上,且,則雙曲線C的離心率為( )
A.B.2C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜率為的直線交拋物線于兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)等于0,求的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與直線只有一個(gè)公共點(diǎn),點(diǎn)是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的方程;
(2)①若,求證:直線過定點(diǎn);
②若是拋物線上與原點(diǎn)不重合的定點(diǎn),且,求證:直線的斜率為定值,并求出該定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com