(2013•朝陽(yáng)區(qū)一模)拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°.過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|MN|
|AB|
的最大值為( 。
分析:設(shè)|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,進(jìn)而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.
解答:解:設(shè)|AF|=a,|BF|=b,連接AF、BF
由拋物線定義,得|AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°=a2+b2+ab
配方得,|AB|2=(a+b)2-ab,
又∵ab≤(
a+b
2
) 2,
∴(a+b)2-ab≥(a+b)2-
1
4
(a+b)2=
3
4
(a+b)2
得到|AB|≥
3
2
(a+b).
所以
|MN|
|AB|
1
2
(a+b)
3
2
(a+b)
=
3
3
,即
|MN|
|AB|
的最大值為
3
3

故選:A
點(diǎn)評(píng):本題在拋物線中,利用定義和余弦定理求
|MN|
|AB|
的最大值,著重考查拋物線的定義和簡(jiǎn)單幾何性質(zhì)、基本不等式求最值和余弦定理的應(yīng)用等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,
π
2
]
時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)若直線y=x+m與圓x2+y2+4x+2=0有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)字-1,0,1,2.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)字后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(Ⅰ)在一次試驗(yàn)中,求卡片上的數(shù)字為正數(shù)的概率;
(Ⅱ)在四次試驗(yàn)中,求至少有兩次卡片上的數(shù)字都為正數(shù)的概率;
(Ⅲ)在兩次試驗(yàn)中,記卡片上的數(shù)字分別為ξ,η,試求隨機(jī)變量X=ξ•η的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2]上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)設(shè)τ=(x1,x2,…,x10)是數(shù)1,2,3,4,5,6,7,8,9,10的任意一個(gè)全排列,定義S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)達(dá)到最大值的所有排列τ的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案