某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)從頻率分布直方圖中,估計本次考試的平均分;

(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.

 

【答案】

(Ⅰ)見解析   (Ⅱ)平均分為:71

(Ⅲ)所以X的分布列為

【解析】(Ⅰ)利用直方圖中的頻率之和為1,求出所給區(qū)間的概率,再補充頻率分布直方圖;(Ⅱ)利用求平均數(shù)的公式求解即可;(Ⅲ)先求出隨機變量的取值即相應(yīng)的概率,再根據(jù)分布列的概念和期望定義求出

(Ⅰ)設(shè)分?jǐn)?shù)在[70,80)內(nèi)的頻率為x,根據(jù)頻率分布直方圖,則有

(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以頻率分布直方圖如圖所示.

(Ⅱ)平均分為:

(Ⅲ)學(xué)生成績在[40,70)的有0.4×60=24人,在[70,100]的有0.6×60=36人,并且X的可能取值是0,1,2.

所以X的分布列為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)從頻率分布直方圖中,估計本次考試的平均分;
(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加某次“廣州亞運”知識競賽測試的學(xué)生中隨機抽出60名學(xué)生,將其成績(百分制)(均為整數(shù))分成六段[40,50)[50,60)…[90,100)下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;(Ⅲ)若從60名學(xué)生隨機抽取2名,抽到的學(xué)生成績在[40,70)記0分,在[70,100)記1分,用ξ表示抽取結(jié)束后的總記分,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆寧夏銀川二中高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)從頻率分布直方圖中,估計本次考試的平均分;
(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省高三高考適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(一)(解析版) 題型:解答題

某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖中的信息,回答下列問題.

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)根據(jù)頻率分布直方圖,估計本次考試的平均分;

(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,記[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望。

 

查看答案和解析>>

同步練習(xí)冊答案