【題目】有兩種理財(cái)產(chǎn)品,投資這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

注:

1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)的取值范圍;

2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

【答案】(1) (2)見解析

【解析】

1)記事件甲選擇產(chǎn)品投資且獲利,記事件乙選擇產(chǎn)品投資且獲利,記事件一年后甲、乙兩人至少有一人投資獲利,根據(jù)題意得到,由,以及,即可求出結(jié)果;

2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,根據(jù)題中條件,得到期望;假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,由題中條件,得到期望,分情況討論,比較大小,即可得出結(jié)果.

1)記事件甲選擇產(chǎn)品投資且獲利,記事件乙選擇產(chǎn)品投資且獲利,記事件一年后甲、乙兩人至少有一人投資獲利

,,

,且,

2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:

投資結(jié)果

10

0

概率

假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:

投資結(jié)果

8

0

概率

∴當(dāng)時(shí),,丙可在產(chǎn)品和產(chǎn)品中任選一個(gè)投資;

當(dāng)時(shí),,丙應(yīng)選產(chǎn)品投資;

當(dāng)時(shí),,丙應(yīng)選產(chǎn)品投資.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,平面平面,四邊形是菱形,.

1)若,證明:;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對(duì)任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對(duì)任意的,都有關(guān)于對(duì)稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

1)求的值;

2)求證:;

3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點(diǎn)分別為,以為圓心,為半徑的圓交的右支于兩點(diǎn),若的一個(gè)內(nèi)角為,則的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn),并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn),到直線的距離分別為,為垂足),測(cè)得,(單位:百米).

1)若道路與橋垂直,求道路的長(zhǎng);

2)在規(guī)劃要求下,中能否有一個(gè)點(diǎn)選在處?并說明理由;

3)在規(guī)劃要求下,若道路的長(zhǎng)度均為(單位:百米),求當(dāng)最小時(shí),、兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(.

(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

同步練習(xí)冊(cè)答案