已知某三棱錐的三視圖均為腰長(zhǎng)為2的等腰直角三角形(如圖),則過(guò)該棱錐所有頂點(diǎn)的球的表面積為( 。
A、48πB、24π
C、12πD、8π
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:先由三視圖判斷出幾何體的形狀及度量長(zhǎng)度,然后利用過(guò)該棱錐所有頂點(diǎn)的球?yàn)槔忾L(zhǎng)為2的正方體的外接球,求出過(guò)該棱錐所有頂點(diǎn)的球的表面積.
解答: 解:由三視圖得,該幾何體為底面為直角邊邊長(zhǎng)為2的等腰直角三角形,
兩個(gè)相鄰的側(cè)面也是直角邊邊長(zhǎng)為2的等腰直角三角形,則高為2.
∴過(guò)該棱錐所有頂點(diǎn)的球?yàn)槔忾L(zhǎng)為2的正方體的外接球,直徑為2
3
,半徑為
3
,
∴過(guò)該棱錐所有頂點(diǎn)的球的表面積為4π×3=12π.
故選:C.
點(diǎn)評(píng):解決三視圖的題目,關(guān)鍵是由三視圖判斷出幾何體的形狀及度量長(zhǎng)度,然后利用幾何體的面積及體積公式解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,2),
b
=(-1,6),
c
=2
a
-
b
,求與
c
平行的單位向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知n∈N*,數(shù)列{dn}滿足dn=
3+(-1)n
2
,數(shù)列{an}滿足an=d1+d2+d3+…+d2n;又知數(shù)列{bn}中,b1=2,且對(duì)任意正整數(shù)m,n,bnm=bmn
(Ⅰ)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),…,第an項(xiàng),…刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}前2014項(xiàng)的和T2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某組合體的三視圖如圖所示,則該組合體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意n∈N*,2
Sn
是an+2和an的等比中項(xiàng).
(1)證明:數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-2sinx,x∈[-
π
2
,
π
2
]的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

球的兩個(gè)平行截面的面積分別為5π、8π,兩截面間的距離為1,求球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A
2
6
=( 。
A、10B、30C、60D、120

查看答案和解析>>

同步練習(xí)冊(cè)答案