(本小題滿分12分)
已知函數(shù)
(1)若
(2)若函數(shù)的圖像上有與軸平行的切線,求的取值范圍。
(3)若函數(shù)
求的取值范圍。
(1);(2)由;
(3)。
解析試題分析: (1)先求解導(dǎo)數(shù),然后利用導(dǎo)數(shù)大于零得到單調(diào)增區(qū)間
(2)
依題意,知方程有實(shí)根,結(jié)合判別式得到大于等于零,求得范圍。
(3)利用函數(shù)在x=1處取得極值,進(jìn)而分析求解得到參數(shù)a的值,再得到另一個(gè)極值點(diǎn)進(jìn)而分析得到最值證明不等式。
(1)……………………2分
(2)
依題意,知方程有實(shí)根……………4分
所以……………6分
(3)由函數(shù)在處取得極值,知是方程
的一個(gè)根,所以, ┄┄┄┄┄┄┄┄┄7分
方程的另一個(gè)根為
因此,當(dāng),當(dāng)
所以,和上為增函數(shù),在上為減函數(shù),
因此,┄┄┄┄┄┄11分
恒成立,
┄┄┄┄┄12分
考點(diǎn):本題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。研究函數(shù)單調(diào)性和函數(shù)的極值問題,以及函數(shù)的最值的求解。
點(diǎn)評(píng):解決該試題的關(guān)鍵是求解導(dǎo)數(shù),分析導(dǎo)數(shù)的正負(fù)對(duì)于函數(shù)單調(diào)性的影響,以及導(dǎo)數(shù)的幾何意義求解切線方程問題中兩個(gè)要素:切點(diǎn)和切線的斜率。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)判斷函數(shù)是否是有界函數(shù),請(qǐng)寫出詳細(xì)判斷過(guò)程;
(2)試證明:設(shè),若在上分別以為上界,
求證:函數(shù)在上以為上界;
(3)若函數(shù)在上是以3為上界的有界函數(shù),
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
小王需不定期地在某超市購(gòu)買同一品種的大米.現(xiàn)有甲、乙兩種不同的采購(gòu)策略,策略甲:每次購(gòu)買大米的數(shù)量一定;策略乙:每次購(gòu)買大米的錢數(shù)一定.若以(元)和(元)分別記小王先后兩次買米時(shí),該品種大米的單價(jià),請(qǐng)問:僅這兩次買米而言,甲、乙兩種購(gòu)買方式,從平均單價(jià)考慮,哪種比較合算?請(qǐng)進(jìn)行探討,并給出探討過(guò)程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a與b的關(guān)系式;
(2)若f(x)≥2x恒成立,求a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)的零點(diǎn)是-1和3,當(dāng)時(shí),,且。(1)求該二次函數(shù)的解析式;(2)求函數(shù)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為米.
(1)求底面積,并用含的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù),
(1) 如果且對(duì)任意實(shí)數(shù)均有,求的解析式;
(2) 在(1)在條件下, 若在區(qū)間是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3) 已知且為偶函數(shù),如果,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛. 假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行時(shí)間應(yīng)為多少小時(shí)?
(Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com