已知函數(shù)f(n),(n∈N),滿足條件:①f(2)=2;②f(xy)=f(x)•f(y);
③f(n)∈N; ④當x>y時,有f(x)>f(y).。1)求f(1),f(3)的值.
(2)由f(1)f(2),f(3)的值,猜想f(n)的解析式. (3)證明你猜想的f(n)的解析式的正確性.
解:(1):∵f(2)=f(2×1)=f(2)•f(1),又f(2)=2,∴f(1)=1.又∵f(4)=f(2•2)=f(2)•f(2)=4,2=f(2)<f(3)<f(4)=4,且f(3)∈N.∴f(3)=3.
(2)由f(1)=1,f(2)=2,f(3)=3猜想f(n)=n(n∈N).
(3)用數(shù)學歸納法證明:
①當n=1時,f(1)=1,函數(shù)解析式成立;
②假設n≤k時,f(k)=k,函數(shù)解析式成立;
(i)若k+1=2m(m∈N),f(k+1)=f(2m)=f(2)•f(m)=2m=k+1.
(ii)若k+1=2m+1(m∈N),f(2m+2)=f[2(m+1)]=f(2)•f(m+1)=2(m+1)=2m+2,2m=f(2m)<f(2m+1)<f(2m+2)=2m+2.∴f(2m+1)=2m+1=k+1.
即n=k+1時,函數(shù)解析式成立.
綜合①②可知,f(n)=n(n∈N)成立.
分析:(1):由已知可得f(2)=f(2×1)=f(2)•f(1),結合f(2)=2,可求f(1),由f(4)=f(2•2)=f(2)•f(2)=4,及2=f(2)<f(3)<f(4)=4,且f(3)∈N可求f(3)
(2)由f(1)=1,f(2)=2,f(3)=3猜想f(n)=n(n∈N),
(3)然后利用數(shù)學歸納法證明即可
點評:本題主要考查了利用賦值求解抽象函數(shù)的函數(shù)值,及歸納推理的應用,數(shù)學歸納法在證明數(shù)學命題中的應用,屬于綜合性試題