如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE

為平行四邊形,DC平面ABC ,,
(1)證明:平面ACD平面;
(2)記,表示三棱錐A-CBE的體積,求的表達式;
(3)當取得最大值時,求證:AD=CE.
解:(1)證明:∵四邊形DCBE為平行四邊形 ∴,---------1分
∵DC平面ABC ,平面ABC  ∴. ----------2分
∵AB是圓O的直徑 ∴     
平面ADC. 
∵DE//BC  ∴平面ADC ---------------------------------------3分
又∵平面ADE  ∴平面ACD平面----------------4分
(2)∵DC平面ABC ,  CD//BE ∴平面ABC
平面   ∴BEAB, --------------------------------------------------------5分
在Rt△ABE中,由,------------6分
在Rt△ABC中∵
------------------------------------7分
)-------8分
(3)由(2)知要取得最大值,當且僅當取得最大值,
   ∴------------10分
∴當且僅當,即時,“=”成立,
即當取得最大值時,這時△ACB為等腰直角三角形
連結(jié)DB , ∵AC=BC,DC=DC
 ------------------12分 
∴AD="BD " 又四邊形BCDE為矩形 ∴
∴AD=CE------------------------------------------------------------14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是矩形,
底面PBC邊的中點,SB
平面ABCD所成的角為45°,且AD=2,SA=1.
(1)求證:平面SAP
(2)求二面角ASDP的大小.          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD.
SD=2,,E是SD上的點.(Ⅰ)求證:AC⊥BE;
(Ⅱ)求二面角C—AS—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF ⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′—ABCP.
(I)求證D′F⊥AP;


 
  (II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′—ABCP的體積

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在底面是菱形的四棱錐P-ABC中,∠ABC=600,PA=AC=a,PB=PD=,點EPD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EACDAC為面的二面角的大。

題18圖

 
 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩條不同的直線、及平面,給出四個下列命題:
(1)若,,則
(2)若,,則
(3)若、所成的角相等,則
(4)若,,則
其中正確的命題有( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

表示平面,為直線,下列命題中為真命題的是                      (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體--,E、F分別是、的中點,p是上的動點(包括端點),過E、D、P作正方體的截面,若截面為四邊形,則P的軌跡是
A.線段   B、線段    C、線段和一點     D、線段和一點C。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

關于直線a、b,以及平面M、N,給出下列命題:
①若a//M, b//M,則a//b      ②若a//M, b⊥M,則ab
③若a//b, b//M,則a//M      ④若a⊥M, a//N,則M⊥N
其中正確的命題的個數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案