設(shè)函數(shù)f(x)滿足:af(x)+bf(
1
x
)=
c
x
(a、b、c均為常數(shù),|a|≠|(zhì)b|),試求f(x).
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意,得af(x)+bf(
1
x
)=
c
x
…①,令
1
x
=x,可得af(
1
x
)+bf(x)=cx…②,由①、②組成方程組,求得f(x)的解析式.
解答: 解:∵a、b、c均為常數(shù),|a|≠|(zhì)b|,且
af(x)+bf(
1
x
)=
c
x
…①,
∴af(
1
x
)+bf(x)=cx…②,
①×a-②×b,得
(a2-b2)f(x)=
ac
x
-bcx,
∴f(x)=
ac-bcx2
a2x-b2x
點評:本題考查了利用解方程組的方法求函數(shù)解析式的問題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若向量
a
=(2,3)
,
b
=(x,-6)
,且
a
b
,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1-|x-1|,x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,則下列說法中正確命題的個數(shù)是( 。
①函數(shù)y=f(x)-ln(x+1)有3個零點;
②若x>0時,函數(shù)f(x)≤
k
x
恒成立,則實數(shù)k的取值范圍是[
3
2
,+∞);
③函數(shù)f(x)的極大值中一定存在最小值;
④f(x)=2kf(x+2k),(k∈N),對于一切x∈[0,+∞)恒成立.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四種說法:
①命題:“?x0∈R,使得x2-x>0”的否定是“?x∈R,都有x2-x≤0”;
②已知隨機變量x服從正態(tài)分布N(1,σ2),P(x≤4)=0.79,則P(x≤-2)=0.21;
③函數(shù)f(x)=2sinxcosx-1,(x∈R)圖象關(guān)于直線x=
4
對稱,且在區(qū)間[-
π
4
,
π
4
]
上是增函數(shù);
④設(shè)實數(shù)x,y∈[0,1],則滿足:x2+y2<1的概率為
π
4

其中錯誤的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+2ay-5=0,l2:(3a-1)x-ay-2=0,若l1∥l2,則a的值為(  )
A、-
1
6
B、6
C、0
D、0或-
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的左焦點F1(-2
3
,0),其長軸長和短軸長之和為12.求此橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,2an+1=an+1,求數(shù)列{an}的通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1
2
ax2-x-lnx

(1)當a=2時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
、
e2
是夾角為60°的兩個單位向量,
a
=3
e1
-2
e2
,
b
=2
e1
-3
e2

(Ⅰ)求
a
b
;    
(Ⅱ)求
a
+
b
a
-
b
的夾角.

查看答案和解析>>

同步練習冊答案