精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與 的圖象的對稱軸相同,則f(x)的一個遞增區(qū)間為( 。
A.
B.
C.
D.

【答案】B
【解析】解:函數

化簡可得:g(x)=cos2(x﹣ )+2=cos(2x﹣ )+2=sin(2x﹣ )+2=sin(2x+ )+2.

∵f(x)與g(x)的對稱軸相同,

0<φ<π.

∴ω=2,φ=

那么f(x)=sin(2x+ ),

,k∈Z.

得: ≤x≤ ,

當k=0時,可得f(x)的一個遞增區(qū)間為[ , ].

所以答案是:B.

【考點精析】本題主要考查了正弦函數的單調性的相關知識點,需要掌握正弦函數的單調性:在上是增函數;在上是減函數才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知 是雙曲線 的右焦點,過點 的一條漸近線的垂線,垂足為 ,線段 相交于點 ,記點 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某樂隊參加一戶外音樂節(jié),準備從3首原創(chuàng)新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊的互動指數為a(a為常數),演唱一首經典歌曲觀眾與樂隊的互動指數為2a,求觀眾與樂隊的互動指數之和X的概率分布及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,則函數g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點個數是(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點A折起至A′,設二面角A′﹣BD﹣C的大小為θ.

(1)當θ=90°時,求A′C的長;
(2)當cosθ= 時,求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知公差不為0的等差數列{an}中,a1 , a3 , a7成等比數列,且a2n=2an﹣1,等比數列{bn}滿足bn+bn+1=
(1)求數列{an},{bn}的通項公式;
(2)令cn=anbn , 求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個,則t的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 經過點 ,左右焦點分別為F1、F2 , 圓x2+y2=2與直線x+y+b=0相交所得弦長為2.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設Q是橢圓C上不在x軸上的一個動點,O為坐標原點,過點F2作OQ的平行線交橢圓C于M、N兩個不同的點
⑴試探究 的值是否為一個常數?若是,求出這個常數;若不是,請說明理由.
⑵記△QF2M的面積為S1 , △OF2N的面積為S2 , 令S=S1+S2 , 求S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小張于年初支出50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小張在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售收入為25﹣x萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小張獲得的年平均利潤最大?(利潤=累計收入+銷售收入﹣總支出)

查看答案和解析>>

同步練習冊答案