【題目】已知函數(shù)
(1)若,求函數(shù)的零點;
(2)若不存在相異實數(shù)、,使得成立.求實數(shù)的取值范圍;
(3)若對任意實數(shù),總存在實數(shù)、,使得成立,求實數(shù)的最大值.
【答案】(1)零點分別是:、、;(2);(3).
【解析】
(1)解方程即可得出函數(shù)的零點;
(2)將函數(shù)的解析式表示為分段函數(shù)的形式,對實數(shù)分、、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合題中結(jié)論可求得實數(shù)的取值范圍;
(3)由題意可得,對實數(shù)分、、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,求得函數(shù)在區(qū)間上的最大值和最小值,進(jìn)而可得出,由此可求得實數(shù)的最大值.
(1)當(dāng)時,,令,可得,
所以,或,解得或,
所以,當(dāng)時,函數(shù)的零點分別為、、;
(2).
①當(dāng)時,函數(shù)在上遞減,符合題意;
②當(dāng)時,函數(shù)在上遞增,符合題意;
③當(dāng)時,函數(shù)在上遞增,在上遞減,不符合題意.
綜上所述,實數(shù)的取值范圍是;
(3)由題意可得.
①當(dāng)時,函數(shù)在上遞減,
則,,
;
②當(dāng)時,函數(shù)在上遞增,
,,
;
③當(dāng)時,函數(shù)在上遞增,在上遞減,
,.
當(dāng)時,;
當(dāng)時,.
綜上所述,,
因此,實數(shù)的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點,恰好又是雙曲線的右焦點,雙曲線過點,且其離心率為.
(1)求拋物線和雙曲線的標(biāo)準(zhǔn)方程;
(2)已知直線過點,且與拋物線交于,兩點,以為直徑作圓,設(shè)圓與軸交于點,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】常州別稱龍城,是一座有著3200多年歷史的文化古城.常州既有春秋淹城、天寧寺等名勝古跡,又有中華恐龍園、嬉戲谷等游樂景點,每年都有大量游客來常州參觀旅游.為合理配置旅游資源,管理部門對首次來中華恐龍園游覽的游客進(jìn)行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽中華恐龍園,另外的人計劃既游覽中華恐龍園又參觀天寧寺.每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2分.假設(shè)每位首次來中華恐龍園游覽的游客均按照計劃進(jìn)行,且是否參觀天寧寺相互獨立,視頻率為概率.
(1)有2名首次來中華恐龍園游覽的游客是拼車到常州的,求“這2名游客都是既游覽中華恐龍園又參觀天寧寺”的概率;
(2)從首次來中華恐龍園游覽的游客中隨機(jī)抽取3人,記這3人的合計得分為X,求X的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當(dāng)時,求證:;
(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)存在,對任意,有不等式成立,求實數(shù)的取值范圍;
(2)如果存在、,使得成立,求滿足條件的最大整數(shù);
(3)對任意,存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與曲線兩交點所在直線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,直線與軸的交點為,與曲線相交于兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com