等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S10=0,S15=25,則nSn的最小值為_(kāi)_______.
-49
由已知解得a1=-3,d,那么nSnn2a1d,由于函數(shù)f(x)=x處取得極小值也是最小值,因而檢驗(yàn)n=6時(shí),6S6=-48,而n=7時(shí),7S7=-49.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn),在曲線(xiàn)上.
(1)求,;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}滿(mǎn)足:a1=-8,a2=-6,若將a1,a4,a5都加上同一個(gè)數(shù),所得的三個(gè)數(shù)依次成等比數(shù)列,則所加的這個(gè)數(shù)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式是an=-n2+12n-32,其前n項(xiàng)和是Sn,對(duì)任意的m,n∈N*m<n,則SnSm的最大值是(  ).
A.-21B.4 C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,a1=-2 014,其前n項(xiàng)和為Sn,若=2,則S2 014的值等于(  ).
A.-2 011 B.-2 012C.-2 014D.-2 013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知公差不為0的等差數(shù)列{an}滿(mǎn)足a1,a3,a4成等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,則的值為 (  ).
A.2 B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,對(duì)于任意的n∈N,anSn,a成等差數(shù)列,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn,若對(duì)任意的實(shí)數(shù)x∈(1,e](e是自然對(duì)數(shù)的底)和任意正整數(shù)n,總有Tn<r(r∈N).則r的最小值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1,Sn)在直線(xiàn)3x+2y-3=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等差數(shù)列的前n項(xiàng)和為Sn,且S3=6,a1=4,則公差d等于 (    )
A.1B.C.-2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案