【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c滿足b2+c2﹣a2=bc, , ,則b+c的取值范圍是(
A.
B.
C.
D.

【答案】B
【解析】解:由題意可得b2+c2﹣a2=bc, ∴cosA= = ,
∵A∈(0,π),∴A= ,
,∴B為鈍角,
+B+C=π,∴C= ﹣B,
<B<
由正弦定理可得 =1=
∴b+c=sinB+sinC=sinB+sin( ﹣B)
= sinB+ cosB= sin(B+ ),
<B< ,∴ <B+ ,
<sin(B+ )<
sin(B+ )< ,
故選:B
【考點精析】本題主要考查了余弦定理的定義的相關(guān)知識點,需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差d>0的等差數(shù)列{an}中,a1=10,且a1 , 2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項an;
(2)設(shè)Sn= + +…+ ,求證:Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓準(zhǔn)圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

1)求橢圓的方程和其準(zhǔn)圓方程;

2)點是橢圓準(zhǔn)圓上的動點,過點作橢圓的切線準(zhǔn)圓于點.

當(dāng)點準(zhǔn)圓軸正半軸的交點時,求直線的方程并證明;

求證:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an} 中,已知公差 ,且a1+a3+a5+…+a99=60,則a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且滿足a2+a5=36,a3a4=128. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}是遞增數(shù)列,且bn=an+log2an(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線AB與a成60°角時,AB與b成30°角;

當(dāng)直線AB與a成60°角時,AB與b成60°角;

直線AB與a所稱角的最小值為45°;

直線AB與a所稱角的最小值為60°;

其中正確的是________。(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入S的值為﹣1,則輸出S的值為(

A.﹣1
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=2sin(3x+ ),求出其定義域,值域,最小正周期,以及單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案