分析:對(duì)于A,f(-2)≠f(2)且f(-2)≠-f(2),故函數(shù)是非奇非偶函數(shù);
選項(xiàng)B,函數(shù)的定義域[-1,1)不對(duì)稱(chēng),故非奇非偶函數(shù);
選項(xiàng)C,函數(shù)定義域{x|x≠2}不對(duì)稱(chēng),故非奇非偶函數(shù);
選項(xiàng)D,函數(shù)f(x)=1,f(-x)≠-f(x)故不是奇函數(shù),從而得到結(jié)論.
解答:解:選項(xiàng)A,f(2)=2+
,f(-2)=-2+
,f(-2)≠f(2)且f(-2)≠-f(2),故函數(shù)
f(x)=x+是非奇非偶函數(shù);
選項(xiàng)B,函數(shù)
f(x)=(1-x)的定義域[-1,1)不對(duì)稱(chēng),故非奇非偶函數(shù)
選項(xiàng)C,函數(shù)
f(x)=的定義域{x|x≠2}不對(duì)稱(chēng),故非奇非偶函數(shù);
選項(xiàng)D,函數(shù)f(x)=1,f(-x)≠-f(x)故不是奇函數(shù),
故選A.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的判定,判定奇偶性先看其定義域是否對(duì)稱(chēng),然后根據(jù)定義進(jìn)行判定,屬于基礎(chǔ)題.