在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知向量,,.
(1)求角C的大小;
(2)若,求角A的值.
(1)(2).
解析試題分析:解題思路:(1)利用平面向量的垂直的判定得出三角形的三邊的關(guān)系式,在利用余弦定理求角;(2)利用三角形的三角關(guān)系進(jìn)行消元,使其變?yōu)殛P(guān)于角A的式子,再恒等變形求角的正弦值,結(jié)合角的范圍求角.規(guī)律總結(jié):對(duì)于以平面向量為載體考查三角函數(shù)問(wèn)題,要正確利用平面向量知識(shí)化為三角函數(shù)關(guān)系式,再利用三角函數(shù)的有關(guān)公式進(jìn)行變形.
注意點(diǎn):利用三角函數(shù)值求角時(shí),一定要結(jié)合角所在的范圍求角.
試題解析:(1) 由
整理得
即
又
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/95/5/ndnn2.png" style="vertical-align:middle;" />,
所以
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/9/j1s3a1.png" style="vertical-align:middle;" />,所以
故
由
即,
所以.
即.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/50/d/kuiev.png" style="vertical-align:middle;" />
故
所以.
考點(diǎn):1.平面向量垂直的判定;2余弦定理;3.三角恒等變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角,,所對(duì)的邊分別為,,,已知.
(1)求證:,,成等比數(shù)列;
(2)若,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:,,是的內(nèi)角,,,分別是其對(duì)邊長(zhǎng),向量,,.
(1)求角A的大;
(2)若求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,,,其中A,B,C分別為△ABC的三邊,,所對(duì)的角.
(1)求角C的大。
(2)若,且S△ABC=,求邊c的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B、C為三角形ABC的三內(nèi)角,其對(duì)應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;(2)若,,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,且c=3,C=60°
(1)若a=,求角A;(2)若,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com