已知四邊形
ABCD為平行四邊形,
BC⊥平面
ABE,
AE⊥
BE,
BE =
BC = 1,
AE =
,
M為線段
AB的中點,
N為線段
DE的中點,
P為線段
AE的中點。
(1)求證:
MN⊥
EA;
(2)求四棱錐
M –
ADNP的體積。
(1)利用線面垂直的性質(zhì)定理來證明線線垂直,主要是對于
的證明。(2)1
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在正方體
中,
是棱
的中點.
(Ⅰ)證明:
平面
;
(Ⅱ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
正四棱錐P-ABCD的所有棱長都相等,則側(cè)棱與底面所成的角為 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
正方體
的棱線長為1,線段
上有兩個動點E,F(xiàn),且
,則三棱錐
的體積為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,四面體
的六條邊均相等,
分別是
的中點,則下列四個結(jié)論中不成立的是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若a,b是兩條直線,α是一個平面,則下列命題正確的是( )
A.若a∥b,則a平行于經(jīng)過b的任何平面 |
B.若a∥α,則a與α內(nèi)任何直線平行 |
C.若a∥α,b∥α,則a∥b |
D.若a∥b,a∥α,bα,則b∥α |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是平面
內(nèi)的一條定直線,
是平面
外的一個定點,動直線
經(jīng)過點
且與
成
角,則直線
與平面
的交點
的軌跡是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直角梯形
ABCD中,
,
,且
,
E、F分別為線段
CD、AB上的點,且
.將梯形沿
EF折起,使得平面
平面
BCEF,折后
BD與平面
ADEF所成角正切值為
.
(Ⅰ)求證:
平面
BDE;
(Ⅱ)求平面
BCEF與平面
ABD所成二面角(銳角)的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在正三棱
( )
查看答案和解析>>