【題目】如圖,橢圓()的離心率是,過(guò)點(diǎn)(,)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為

求橢圓的方程:

已知為橢圓的左端點(diǎn),問(wèn): 是否存在直線使得的面積為?若不存在,說(shuō)明理由,若存在,求出直線的方程.

【答案】(1);(2)存在直線方程使得

【解析】試題分析:(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運(yùn)用直線與橢圓的位置關(guān)系進(jìn)行探求.

試題解析:

1橢圓:的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),

當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為,

點(diǎn)在橢圓,

,解得:,………………4

橢圓的方程為………………………5分,

2)當(dāng)直線軸平行時(shí),不存在,…………………6分,

設(shè)直線的方程為,并設(shè)兩點(diǎn),

聯(lián)立,得,

其判別式,…………8分,

,,

,…………10

假設(shè)存在直線,則有,

解得,負(fù)解刪除,,……………………12

故存在直線方程使得…………13分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)①f(x)=4x+-5,②f(x)=|log2 x|-(x,③f(x)=cos(x+2)-cosx,判斷如下兩個(gè)命題的真假:

命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);

命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個(gè)零點(diǎn)x1,x2,且x1x2<1.

能使命題甲、乙均為真的函數(shù)的序號(hào)是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3x2x(0<a<1,x∈R).若對(duì)于任意的三個(gè)實(shí)數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,在直角梯形中,,,,的中點(diǎn),的交點(diǎn),將沿折起到的位置,如圖乙.

)證明:平面;

)若平面平面,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形中,,相交于點(diǎn)平面,.

(1)求證:平面

(2)當(dāng)直線與平面所成角的大小為時(shí),求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在上的最小值為,當(dāng)把的圖象上所有的點(diǎn)向右平移個(gè)單位后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)在,,對(duì)應(yīng)的邊分別是,,,若函數(shù)軸右側(cè)的第一個(gè)零點(diǎn)恰為,求△的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).若的一個(gè)零點(diǎn)附近的函數(shù)值如下所示,請(qǐng)用二分法求出方程的一個(gè)正實(shí)數(shù)解的近似值(精確度0.1).,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)定點(diǎn)P(-2,1)作直線l分別與x、y軸交于A、B兩點(diǎn),

(1)求經(jīng)過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線l方程.

(2)求使面積為4時(shí)的直線l方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案