計算:cos243°+cos244°+cos245°+cos246°+cos247°=
 
考點:二倍角的余弦
專題:三角函數(shù)的求值
分析:利用互余角的正弦和余弦的關系一節(jié)課同角三角函數(shù)的基本關系式中的平方關系解答.
解答: 解:原式=sin247°+sin246+cos245°+cos246°+cos247°=(sin247°+cos247)+cos245°+(sin243°+cos247°)=1+
1
2
+1=
5
2
;
故答案為:
5
2
點評:本題考查了互余角的正弦和余弦的關系與同角的三角函數(shù)的基本關系式的運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=|sin(2x+
π
4
)|的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一艘船在水中航行,水流速度與船在靜水中的航行速度均為5km/h
(1)若此船沿著與水流垂直的方向行駛,你知道船的實際航行速度的大小和方向嗎?
(2)如果此船實際向南偏西30°方向行駛2km,然后又向西行駛2km,你知道此船在整個過程中的位移嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在定義在R上的奇函數(shù),若對于任意給定的不等實數(shù)x1、x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,則不等式f(x)<0的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,10)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半平面α與半平面β所成的二面角為30°,若α內(nèi)的一個橢圓上的所有點在β內(nèi)的射影構成一個圓,則此橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,0)、B(1,0),動點P滿足:∠APB=2θ,且|PA|•|PB|cos2θ=1.(P不在線段AB上)
(1)求動點P的軌跡C的方程;
(2)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點P、Q,試問直線PQ是否經(jīng)過定點,若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓心角為2弧度的扇形半徑長為l,那么這個扇形面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:lg2+(1.03)0+0.027 -
1
3
+lg5+2 3+log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文做)已知向量
m
=(1,1),
k
=(1,0)
,向量
n
與向量
m
的夾角為
4
,且
m
n
=-1
,
n
k
不共線.
(1)求向量
n
;
(2)若△ABC中,有2B=A+C,且有向量
p
=(cosA,2cos2
C
2
)
,求|
n
+
p
|
的取值范圍.

查看答案和解析>>

同步練習冊答案