【題目】已知).

(Ⅰ)判斷當(dāng)的單調(diào)性;

(Ⅱ)若,)為兩個極值點,求證:

【答案】(Ⅰ)在定義域上為單調(diào)增函數(shù);(Ⅱ)證明見解析.

【解析】

)先利用換元法求出,然后求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系進行判斷即可.

)根據(jù)極值的定義得到有兩個不相等的正實數(shù)根,利用根與系數(shù)之間的關(guān)系進行轉(zhuǎn)化證明即可.

)因為),

所以,().,

當(dāng)時,,恒成立.

于是,在定義域上為單調(diào)增函數(shù).

)證明:,

由題設(shè)知,有兩個不相等的正實數(shù)根,

,即,得

,

,

故欲證原不等式等價于證明不等式:

也就是要證明:對任意,有

,由于,并且,

當(dāng)時,,則上為減函數(shù);

當(dāng)時, ,則上為增函數(shù).

上有最大值,即,故原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)當(dāng)時,證明:

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:為參數(shù)),以平面直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,將曲線繞極點順時針旋轉(zhuǎn)后得到曲線的曲線記為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)的交點為,,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名數(shù)學(xué)家劉徽的杰作《九章算術(shù)注》是中國最寶貴的數(shù)學(xué)遺產(chǎn)之一,書中記載了他計算圓周率所用的方法.先作一個半徑為1的單位圓,然后做其內(nèi)接正六邊形,在此基礎(chǔ)上做出內(nèi)接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術(shù)”.現(xiàn)設(shè)單位圓的內(nèi)接正邊形的一邊為,點為劣弧的中點,則是內(nèi)接正邊形的一邊,現(xiàn)記,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三(1)班在一次語文測試結(jié)束后,發(fā)現(xiàn)同學(xué)們在背誦內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學(xué)們對站起來大聲誦讀的態(tài)度,對全班50名同學(xué)進行調(diào)查,將調(diào)查結(jié)果進行整理后制成下表:

考試分?jǐn)?shù)

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?

2)依據(jù)第1問的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績是否優(yōu)秀有關(guān)系.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于某種類型的口服藥,口服小時后,由消化系統(tǒng)進入血液中藥物濃度(單位)與時間小時的關(guān)系為,其中,為常數(shù),對于某一種藥物,,

1)口服藥物后______小時血液中藥物濃度最高;

2)這種藥物服藥小時后血液中藥物濃度如下表

1

2

3

4

5

6

7

8

0.9545

0.9304

0.6932

0.4680

0.3010

0.1892

0.1163

0.072

一個病人上午800第一次服藥,要使得病人血液中藥物濃度保持在0.5個單位以上,第三次服藥時間是______(時間以整點為準(zhǔn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】筆、墨、紙、硯是中國獨有的文書工具,即文房四寶.筆、墨、紙、硯之名,起源于南北朝時期,其中指的是宣紙,始于唐代,產(chǎn)于涇縣,因唐代涇縣隸屬宣州管轄,故因地得名宣紙,宣紙按質(zhì)量等級分類可分為正牌和副牌(優(yōu)等品和合格品)某公司生產(chǎn)的宣紙為純手工制作,年產(chǎn)宣紙10000刀,該公司按照某種質(zhì)量指標(biāo)x給宣紙確定質(zhì)量等級,如下表所示:

x的范圍

質(zhì)量等級

正牌

副牌

廢品

公司在所生產(chǎn)的宣紙中隨機抽取了一刀(100張)進行檢驗,得到的頻率分布直方圖如上圖所示.已知每張正牌宣紙的利潤為12元,副牌宣紙的利潤為6元,廢品宣紙的利潤為-12.

1)試估計該公司生產(chǎn)宣紙的利潤;

2)該公司預(yù)備購買一種售價為100萬元的機器改進生產(chǎn)工藝,這種機器使用壽命為一年,不影響產(chǎn)量,這種機器生產(chǎn)的宣紙的質(zhì)量指標(biāo)x服從正態(tài)分布,改進工藝后正牌和副牌宣紙的利潤都將受到不同程度的影響,觀測的數(shù)據(jù)如下表所示:

x的范圍

一張宣紙的利潤

12

8

8

3

頻率

0.5

0.5

0.5

0.5

將頻率視為概率,請判斷該公司是否應(yīng)該購買這種機器,并說明理由.

附:若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為進一步規(guī)范校園管理,強化飲食安全,提出了遠(yuǎn)離外賣,健康飲食的口號.當(dāng)然,也需要學(xué)校食堂能提供安全豐富的菜品來滿足同學(xué)們的需求.在學(xué)期末,校學(xué)生會為了調(diào)研學(xué)生對本校食堂A部和B部的用餐滿意度,從在A部和B部都用過餐的學(xué)生中隨機抽取了200人,每人分別對其評分,滿分為100分.隨后整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)分成6組:第1,第2,第3,第4,第5,第6,得到A部分?jǐn)?shù)的頻率分布直方圖和B部分?jǐn)?shù)的頻數(shù)分布表.

分?jǐn)?shù)區(qū)間

頻數(shù)

7

18

21

24

70

60

定義:學(xué)生對食堂的滿意度指數(shù)

分?jǐn)?shù)

滿意度指數(shù)

0

1

2

3

4

5

1)求A部得分的中位數(shù)(精確到小數(shù)點后一位);

2A部為進一步改善經(jīng)營,從打分在80分以下的前四組中,采用分層抽樣的方法抽取8人進行座談,再從這8人中隨機抽取3人參與端午節(jié)包粽子實踐活動,在第3組抽到1人的情況下,第4組抽到2人的概率;

3)如果根據(jù)調(diào)研結(jié)果評選學(xué)生放心餐廳,應(yīng)該評選A部還是B部(將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,記,,若同時滿足條件①,均單調(diào)遞增;②,則稱,是無窮互補數(shù)列.

1)若,,試判斷數(shù)列,是否為無窮互補數(shù)列,并說明理由;

2)若,且,是無窮互補數(shù)列,求數(shù)列項的和.

查看答案和解析>>

同步練習(xí)冊答案