【題目】中國北京世界園藝博覽會于2019年4月29日至10月7日在北京市延慶區(qū)舉行.組委會為方便游客游園,特推出“導引員”服務.“導引員”的日工資方案如下:
方案:由三部分組成
(表一)
底薪 | 150元 |
工作時間 | 6元/小時 |
行走路程 | 11元/公里 |
方案:由兩部分組成:(1)根據(jù)工作時間20元/小時計費;(2)行走路程不超過4公里時,按10元/公里計費;超過4公里時,超出部分按15元/公里計費.已知“導引員”每天上班8小時,由于各種因素,“導引員”每天行走的路程是一個隨機變量.試運行期間,組委會對某天100名“導引員”的行走路程述行了統(tǒng)計,為了計算方便對日行走路程進行取整處理.例如行走1.8公里按1公里計算,行走5.7公里按5公里計算.如表所示:
(表二)
行走路程 (公里) | |||||
人數(shù) | 5 | 10 | 15 | 45 | 25 |
(Ⅰ)分別寫出兩種方案的日工資(單位:元)與日行走路程(單位:公里)的函數(shù)關系
(Ⅱ)①現(xiàn)按照分層抽樣的方工式從,共抽取5人組成愛心服務隊,再從這5人中抽取3人當小紅帽,求小紅帽中恰有1人來自的概率;
②“導引員”小張因為身體原因每天只能行走12公里,如果僅從日工資的角度考慮,請你幫小張選擇使用哪種方案會使他的日工資更高?
【答案】(Ⅰ)方案:,,方案:;(Ⅱ)①,②建議選方案.
【解析】
(Ⅰ)根據(jù)題設條件可得兩種方案的日工資與日行走路程的函數(shù)關系.
(Ⅱ)①用列舉法可得基本事件的總數(shù)和隨機事件中基本事件的個數(shù),從而可得所求的概率.
② 利用(Ⅰ)的函數(shù)可得小張的日工資,根據(jù)所得工資額的大小關系選擇方案.
(Ⅰ)方案:,,
方案:,即.
(Ⅱ)(ⅰ)因為,依題意從中抽取2人,分別設為,,
從中抽取3人,分別設為,,.
設“小紅帽中恰有一人來自”為事件,
則基本事件有、、、、、、、、、共10種.
中的基本事件有、、、、、共6種,所以.
(ⅱ)“方案”:,
方案:.
所以建議選方案.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為.
(1)求曲線C的普通方程;
(2)直線l的參數(shù)方程為,(t為參數(shù)),直線l與x軸交于點F,與曲線C的交點為A,B,當取最小值時,求直線l的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:(常數(shù)),.數(shù)列滿足:.
(1)求的值;
(2)求出數(shù)列的通項公式;
(3)問:數(shù)列的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動互聯(lián)技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,結果如表:
月份 | ||||||
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |
請用相關系數(shù)說明能否用線性回歸模型擬合y與月份代碼x之間的關系,如果能,請計算出y關于x的線性回歸方程,并預測該公司2018年12月的市場占有率如果不能,請說明理由.
根據(jù)調研數(shù)據(jù),公司決定再采購一批單車擴大市場,現(xiàn)有采購成本分別為1000元輛和800元輛的A,B兩款車型,報廢年限各不相同考慮公司的經(jīng)濟效益,該公司決定對兩款單車進行科學模擬測試,得到兩款單車使用壽命頻數(shù)表如表:
報廢年限 車型 | 1年 | 2年 | 3年 | 4年 | 總計 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本以外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,分別以這100輛單車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負責人,會選擇釆購哪款車型?
參考數(shù)據(jù):,,
參考公式:相關系數(shù)
回歸直線方程中的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣2|+|x+1|.
(1)解不等式f(x)≥4.
(2)若f(x)+f(y)≤6,求x+y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個結論,其中正確的是( )
①從勻速傳送的生產(chǎn)流水線上,每30分鐘抽取一件產(chǎn)品進行檢測,這樣的抽樣是分層抽樣;②“”成立的必要而不充分條件是“”;③若樣本數(shù)據(jù),,…,的標準差為3,則,,…,的方差為145;④,,是向量,則由“”類比得到“”的結論是正確的.
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1,底面ABCD是邊長為6的正方形,M,N分別為線段AC1,D1C上的動點,若直線MN與平面B1BCC1沒有公共點或有無數(shù)個公共點,點E為MN的中點,則E點的軌跡長度為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的兩頂點分別為,為雙曲線的一個焦點,為虛軸的一個端點,若在線段上(不含端點)存在兩點,使得,則雙曲線的漸近線斜率的平方的取值范圍是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com