【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,運(yùn)城市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問卷調(diào)查(一位市民只能參加一次),通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計(jì)結(jié)果如表所示:.

組別

頻數(shù)

1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;

2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

①得分不低于的可以獲贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);

②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

贈(zèng)送話費(fèi)的金額(單位:元)

概率

現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.

附:參考數(shù)據(jù)與公式:,若,則,,

【答案】12)詳見解析

【解析】

由題意,根據(jù)平均數(shù)公式求得,再根據(jù),參照數(shù)據(jù)求解.

由題意得,獲贈(zèng)話費(fèi)的可能取值為,求得相應(yīng)的概率,列出分布列求期望.

由題意得

綜上,

由題意得,獲贈(zèng)話費(fèi)的可能取值為

,

的分布列為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點(diǎn).

(1)求證:

(2)求三棱錐的體積;

(3)探究在上是否存在點(diǎn),使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)

1)求橢圓的方程;

2)過點(diǎn)軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)fx)的單調(diào)性;

2)若函數(shù)gx)=fx)﹣lnx2個(gè)不同的極值點(diǎn)x1x2x1x2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù),aR).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.

1)若點(diǎn)A(0,4)在直線l上,求直線l的極坐標(biāo)方程;

2)已知a>0,若點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,若|PQ|最小值為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

同步練習(xí)冊(cè)答案