已知點(diǎn)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),過(guò)F1且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABF2是鈍角三角形,則該雙曲線離心率的取值范圍是______.
根據(jù)題意,可得|AB|=
2b2
a
,|F1F2|=2c,
由雙曲線的對(duì)稱(chēng)性,可知△ABF2為等腰三角形,
只要∠AF2B為鈍角,即|AF1|>|F1F2|即可.
∴不等式
b2
a
>2c
,化簡(jiǎn)得c2-a2>2ac,
兩邊都除以a2,可得e2+2e-1>0
解之得e∈(1+
2
,+∞)
,負(fù)值舍去.
故答案為:(1+
2
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

“mn<0”是方程“mx2+ny2=1表示雙曲線”的(  )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線C
x2
m
+y2=1
的離心率為2,則實(shí)數(shù)m的值為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),P是橢圓上任意一點(diǎn),則當(dāng)直線PM,PN的斜率都存在時(shí),其乘積恒為定值.類(lèi)比橢圓,寫(xiě)出雙曲線C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的類(lèi)似性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若焦點(diǎn)在x軸的雙曲線的一條漸近線為y=
1
2
x
,則它的離心率e=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線
x2
a2
-
y2
b2
=1和
x2
a2
-
y2
b2
=-1(其中a>0,b>0)具有相同的:①焦點(diǎn);②焦距;③離心率;④漸近線.其中正確的結(jié)論序號(hào)是______(填上你認(rèn)為正確的所有序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1,F(xiàn)2是雙曲線
x2
4
-y2=1
的左右焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線
x2
4
-
y2
8
=1
的實(shí)軸長(zhǎng)是( 。
A.2B.2
2
C.4D.4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),△PF1F2的內(nèi)切圓與邊F1F2相切于點(diǎn)M,則
F1M
MF2
=( 。
A.a(chǎn)2B.b2C.a(chǎn)2+b2D.
1
2
b2

查看答案和解析>>

同步練習(xí)冊(cè)答案