【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)若直線的斜率為1, 且,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(1)中橢圓的右頂點(diǎn)為,直線的傾斜角為,問(wèn)為何值時(shí),取得最大值,并求出這個(gè)最大值.
【答案】(1) (2) 最大值為.
【解析】
試題(1)由題可設(shè)出橢圓方程;,先利用條件離心率為,可推出的關(guān)系。再結(jié)合過(guò)點(diǎn)且的直線與橢圓方程聯(lián)立,并設(shè)出交點(diǎn)的坐標(biāo),利用條件,可得點(diǎn)坐標(biāo),再代入橢圓方程,可得。
(2)可先按傾斜角為是否為直角,分別設(shè)過(guò)點(diǎn)直線方程并與(1)中的橢圓方程聯(lián)立,通過(guò)設(shè)出直線與橢圓的交點(diǎn),再利用,建立關(guān)于的關(guān)系式,觀察可運(yùn)用均值不等式求出最大值。
試題解析:(1)設(shè)橢圓方程為:
由得,又知,故
從而橢圓方程簡(jiǎn)化為:.
直線,設(shè)
由消去得:
故 ①
由知: ②
由①②得.易知,故,將其代入橢圓方程得
因此,橢圓方程為:
(2)當(dāng)時(shí),直線.
由得,
故
當(dāng)時(shí),設(shè)直線,
由得
綜上可知:當(dāng)時(shí),最大,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)向量 = =(﹣2,2), =(1,0)時(shí),執(zhí)行如圖所示的程序框圖,輸出的i值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px(p>0)上點(diǎn)T(3,t)到焦點(diǎn)F的距離為4.
(1)求t,p的值;
(2)設(shè)A,B是拋物線上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 (其中O為坐標(biāo)原點(diǎn)).求證:直線AB過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義行列式運(yùn)算 =a1b2﹣a2b1 , 將函數(shù)f(x)= 的圖象向左平移t(t>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則t的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林基地培育了一種新觀賞植物,經(jīng)過(guò)一年的生長(zhǎng)發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照 的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的的值;
(2)在選取的樣本中,從高度在厘米以上(含厘米)的植株中隨機(jī)抽取株,求所取的株中至少有一株高度在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為( )
A.0
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=xex .
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本市某玩具生產(chǎn)公司根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個(gè),且種玩具至少生產(chǎn)20個(gè),每天生產(chǎn)時(shí)間不超過(guò)10小時(shí),已知生產(chǎn)這些玩具每個(gè)所需工時(shí)(分鐘)和所獲利潤(rùn)如表:
玩具名稱 | |||
工時(shí)(分鐘) | 5 | 7 | 4 |
利潤(rùn)(元) | 5 | 6 | 3 |
(Ⅰ)用每天生產(chǎn)種玩具個(gè)數(shù)與種玩具表示每天的利潤(rùn)(元);
(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R
(1)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)﹣ 零點(diǎn)的個(gè)數(shù);
(3)(理科)若對(duì)任意b>a>0, <1恒成立,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com