圓x2+y2-2x-2y+1=0上的動點Q到直線3x+4y+8=0距離的最小值為
 
分析:根據(jù)題意可知,當Q為過圓心作直線的垂線與圓的交點的時候,Q到已知直線的距離最短,所以利用點到直線的距離公式求出圓心到直線的距離,然后減去半徑即可求出最短距離.
解答:解:把圓的方程化為標準式方程得:(x-1)2+(y-1)2=1,
所以圓心A(1,1),圓的半徑r=1,
則圓心A到直線3x+4y+8=0的距離d=
|3+4+8|
32+42
=3,
所以動點Q到直線距離的最小值為3-1=2
故答案為:2
點評:此題要求學生會將圓的方程化為標準式方程并會根據(jù)圓的標準式方程找出圓心坐標和半徑,靈活運用點到直線的距離公式化簡取值,是一道中檔題.此題的關鍵是找出最短距離時Q的位置.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓x2+y2-2x-1=0關于直線2x-y+3=0對稱的圓的方程是( 。
A、(x+3)2+(y-2)2=
1
2
B、(x-3)2+(y+2)2=
1
2
C、(x+3)2+(y-2)2=2
D、(x-3)2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當圓x2+y2+2x+ky+k2=0的面積最大時,圓心坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(2,1)的直線中,被圓x2+y2-2x-4y=0截得的弦長最短的直線方程為
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2-2x+6y+9=0的周長等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓 x2+y2=4與圓x2+y2-2x+y-5=0相交,則它們的公共弦所在的直線方程是
2x-y+1=0
2x-y+1=0

查看答案和解析>>

同步練習冊答案