已知動點P(m,n)在不等式組
x+y≤4
x-y≥0
x≥0
表示的平面區(qū)域內(nèi)部及其邊界上運動,則z=
n-3
m-5
的最小值是( 。
分析:根據(jù)條件畫出可行域,z=
n-3
m-5
,再利用幾何意義求最值,只需求出可行域內(nèi)點和點(5,3)連線的斜率的最值,從而得到z的取值范圍即可.
解答:解:做出不等式組對應(yīng)的平面區(qū)域OAB.因為z=
n-3
m-5
,所以z的幾何意義是區(qū)域內(nèi)任意一點P(x,y)與點M(5,3)兩點直線的斜率.所以由圖象可知當(dāng)直線經(jīng)過點AM時,斜率最小,由
x+y=4
x-y=0
,得A(2,2),此時kAM=
1
3
,所以z=
n-3
m-5
的最小值是
1
3

故選D.
點評:本題主要考查了簡單的線性規(guī)劃,以及利用分式函數(shù)的幾何意義為可行域內(nèi)的點(x,y)和另一個定點的直線斜率求最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P到點F(2,0)的距離與它到直線x=1的距離之比為
2

(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設(shè)點P的軌跡為曲線C,過點F作互相垂直的兩條直線l1、l2,l1交曲線C于A、B兩點,l2交曲線C于M、N兩點.求證:
1
FA
FB
+
1
FM
FN
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P(x,y)到定點F(1,0)的距離比它到定直線x=-2的距離小1.
(1)求點P的軌跡C的方程;
(2)在軌跡C上是否存在兩點M、N,使這兩點關(guān)于直線l:y=kx+3對稱,若存在,試求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P與雙曲線
x2
2
-
y2
3
=1
的兩個焦點F1、F2的距離之和為6.
(1)求動點P的軌跡方程;
(2)若已知D(0,3),點M、N在動點P的軌跡上,且
DM
DN
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省煙臺市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知動點P(m,n)在不等式組表示的平面區(qū)域內(nèi)部及其邊界上運動,則的最小值是( )
A.4
B.3
C.
D.

查看答案和解析>>

同步練習(xí)冊答案